| e a sync free do main au : Tle D     | OG 1 : ANALYSER LA N                                                                                                                                                                                                                           | NATURE DU MOUVEMENT DU C        | CENTRE D'INERTIE D'UN SOLIDE DOC                                                             |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------|
| TITRE: CINEMATIQUE                   | TITRE: CINEMATIQUE DU POINT MATERIEL                                                                                                                                                                                                           |                                 | <u>Durée</u> : 10 H                                                                          |
| Objectifs<br>spécifiques :           | OS 1 : Définir les vecteurs vitesse et accélération d'un point dans un repère donné. OS 2 : Etablir l'expression des équations horaires des mouvements uniformes (rectiligne et circulaire) et des mouvements rectilignes uniformément variés. |                                 |                                                                                              |
| Moyens:                              |                                                                                                                                                                                                                                                |                                 |                                                                                              |
| Vocabulaire spécifique :             |                                                                                                                                                                                                                                                |                                 | e D. Guide pédagogique et Program                                                            |
| Amorce :                             |                                                                                                                                                                                                                                                |                                 |                                                                                              |
| Plan du cours :  I) Repérage d'un po | oint                                                                                                                                                                                                                                           | 3° Expression base de Frenet    | on du vecteur accélération dar                                                               |
| 2.1° Coordon                         | oire<br>point dans un repère<br>nnées cartésiennes                                                                                                                                                                                             | 1° Mouvem<br>1.1° Mo<br>1.2° Mo | e quelques mouvements particuliers<br>nents rectilignes<br>ouvement rectiligne uniforme (MRU |
|                                      | e curviligne                                                                                                                                                                                                                                   | 2.1° Dé                         | ouvement rectiligne uniformé – me                                                            |

 $2.2^{\circ}$  A partir de l'abscisse curviligne

Vecteur accélération

1° Vecteur accélération moyenne

2° Vecteur accélération instantanée

 $2.6^{\circ}$  Période et fréquence du mouve – ment circulaire uniforme



# Activités réponses

# CINEMATIQUE DU POINT MATERIEL



La cinématique est l'étude des mouvements dans un repère donné, indépendamment des causes qui les produisent.

### I) Repérage d'un point

# 1° Rappels

## 1.1° Référentiel

C'est un solide fixe (système indéformable) par rapport auquel on étudie le mouvement d'un objet.

#### **Exemples de référentiel :**

- Référentiel **terrestre** : constitué par la terre ou lié à la terre ;
- référentiel **géocentrique** : origine centre de la terre, utilisé pour décrire le mouvement des astres du système solaire ;
- > référentiel de Copernic ou héliocentrique : origine centre du soleil, utilisé pour l'étude du mouvement des satellites de la terre.

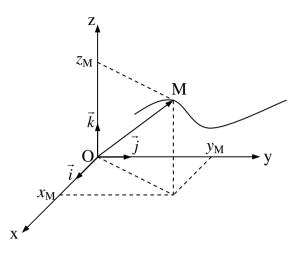
# 1.2° Repères

L'étude du mouvement d'un point mobile nécessite la connaissance de sa position à chaque instant. On définit pour cela un repère d'espace associé au référentiel et un repère de temps. Le repère de temps est défini par une origine des dates notée t<sub>0</sub>.

# 1.3° Trajectoire

Dans un repère donné, la **trajectoire** d'un point mobile est l'ensemble des positions successivement occupées par ce point au cours de son mouvement.

### 2° Position d'un point dans un repère


A un instant donné, la position d'un point mobile peut être repérée de différentes façons.

# 2.1° Coordonnées cartésiennes



Soit M un point dans le repère  $\Re(O,\ \vec{i},\ \vec{j},\ \vec{k})$ , le vecteur  $\overrightarrow{OM}$  est appelé vecteur position du point M.





On a: 
$$\overrightarrow{OM} = x_{M} \vec{i} + y_{M} \vec{j} + z_{M} \vec{k}$$
.

 $x_{\rm M}$ ,  $y_{\rm M}$  et  $z_{\rm M}$  sont les **coordonnées cartésiennes** du point M dans le repère  $\Re(O, \vec{i}, \vec{j}, \vec{k})$ .

 $\vec{i}$ ,  $\vec{j}$  et  $\vec{k}$  sont des vecteurs unitaires.

#### Remarques:

- \* La position du point M varie à chaque instant lors du mouvement ; ses coordonnées sont donc des fonctions du temps :  $x_M = f(t)$  ;  $y_M = g(t)$  et  $z_M = h(t)$ . On les **appelle équations horaires** du mouvement de M.
- \* L'équation cartésienne de la trajectoire du point mobile s'obtient en éliminant le paramètre temps t des équations horaires.

#### Exercice d'application n°1

Dans un repère orthonormé  $\Re(O,\ \vec{i},\ \vec{j},\ \vec{k})$ , la position d'un point M est donnée à chaque instant par :

la position d'un point M est d
$$\overrightarrow{OM} \begin{vmatrix} x = 2t \\ y = 4t^2 + 3 \\ z = 0 \end{vmatrix}$$

- 1) Donner la position de M à t = 2 s.
- 2) Quelle est l'équation cartésienne de sa trajectoire.

### 2.2° Abscisse curviligne

Pour une trajectoire curviligne, la position d'un point mobile peut être repérée à chaque instant par son abscisse curviligne s.



s = f(t) est l'**équation horaire** du mouvement de M.

#### II) Vecteur vitesse

### 1° <u>Vecteur vitesse moyenne</u>

Pour un point mobile M passant de la position M<sub>1</sub> de date t<sub>1</sub> à la position M<sub>2</sub> de date t<sub>2</sub>, le vecteur vitesse moyenne est défini par :

$$\overrightarrow{V_{m}} = \frac{\overrightarrow{OM_{2}} - \overrightarrow{OM_{1}}}{t_{2} - t_{1}} = \frac{\overrightarrow{M_{1}M_{2}}}{t_{2} - t_{1}}.$$

### 2° Vecteur vitesse instantanée

Le vecteur vitesse d'un point mobile M à la date t est égal à la dérivée par rapport au temps du vecteur position :

$$\vec{V} = \frac{d\vec{OM}}{dt}$$
.

# 3° Expression du vecteur vitesse

# 3.1° En coordonnées cartésiennes

Soit  $\overrightarrow{OM} = \overrightarrow{xi} + y\overrightarrow{j} + z\overrightarrow{k}$ , vecteur position du point mobile M.

on a: 
$$\vec{V} = \frac{d\vec{OM}}{dt} = \frac{d}{dt}(x\vec{i} + y\vec{j} + z\vec{k}) = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$
.

 $\vec{V} = x\vec{i} + y\vec{j} + z\vec{k}$ .

En posant: 
$$\vec{\mathbf{V}} = \mathbf{V}_x \vec{\mathbf{i}} + \mathbf{V}_y \vec{\mathbf{j}} + \mathbf{V}_z \vec{\mathbf{k}}$$
 on a:  $\vec{\mathbf{V}} \begin{vmatrix} \mathbf{V}_x = \frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{x} \\ \mathbf{V}_y = \frac{\mathrm{d}y}{\mathrm{d}t} = \mathbf{y} \\ \mathbf{V}_z = \frac{\mathrm{d}z}{\mathrm{d}t} = \mathbf{z} \end{vmatrix}$ 

La valeur de la vitesse est : 
$$V = \sqrt{x^2 + y^2 + z^2}$$
 (m.s<sup>-1</sup>)

#### Exercice d'application n°2

Soit le point mobile M en mouvement dans un repère orthonormé  $\Re\left(O,\ \vec{i},\ \vec{j},\ \vec{k}\right)$  tel que son vecteur-position est :  $\overrightarrow{OM} = 2t\ \vec{i}\ +\ (4t^2+\ 3)\ \vec{j}\ +\ 2\ \vec{k}\ .$ 

- 1) Déterminer les coordonnées de la vitesse du point M à l'instant t.
- 2) Donner la valeur de la vitesse du point M à la date t = 2 s.

# 3.2° A partir de l'abscisse curviligne

La mesure algébrique de la vitesse est égale à la dérivée par rapport au temps de l'abscisse curviligne s:  $V = \frac{ds}{dt} = s$ .

#### III) Vecteur accélération

L'accélération est une grandeur physique qui caractérise la variation de la vitesse au cours du temps.

### 1° Vecteur accélération moyenne

Le vecteur accélération moyenne d'un point M entre deux positions  $M_1$  et  $M_2$ , pendant la durée  $\Delta t = t_2 - t_1$  est :

$$\overrightarrow{a}_{m} = \frac{\overrightarrow{V_{2}} - \overrightarrow{V_{1}}}{t_{2} - t_{1}} = \frac{\overrightarrow{V_{2}} - \overrightarrow{V_{1}}}{\Delta t} \quad (m.s^{-2} \text{ ou } m/s^{2}).$$

$$\overrightarrow{V_{1}} \text{ et } \overrightarrow{V_{2}} \text{ étant respectivement les vitesses instantanées au point } M_{1} \text{ et } M_{2}.$$



# 2° <u>Vecteur accélération instantanée</u>

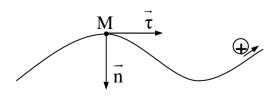
Le vecteur accélération a d'un point mobile M à la date t est égal à la dérivée par rapport au temps de son vecteur vitesse à cet

$$_{instant}$$
:  $\vec{a} = \frac{dV}{dt}$ 

#### Remarques:

$$\vec{V} = \frac{d\overrightarrow{OM}}{dt} \implies \vec{a} = \frac{d\vec{V}}{dt} = \frac{d}{dt}(\frac{d\overrightarrow{OM}}{dt}) = \frac{d^2\overrightarrow{OM}}{dt^2}.$$

\* En coordonnées cartésiennes on a :


$$\vec{a} = \frac{d^2 \overline{OM}}{dt^2} = \frac{d^2 x}{dt^2} \vec{i} + \frac{d^2 y}{dt^2} \vec{j} + \frac{d^2 z}{dt^2} \vec{k} = \vec{x} \vec{i} + \vec{y} \vec{j} + \vec{z} \vec{k}.$$

$$\begin{vmatrix} a_x = x \\ a_y = y \\ a_z = z \end{vmatrix}$$

La valeur de l'accélération : 
$$a = \sqrt{x^2 + y^2 + z^2}$$
 (m.s<sup>-2</sup> ou m/s<sup>2</sup>).

### **3**° Expression du vecteur accélération dans la base de Frenet

Soit un point mobile M décrivant une trajectoire curviligne ;



La base de Frenet est constituée de deux vecteurs unitaires  $\vec{\tau}$  et  $\vec{n}$  liés au point mobile M tels que  $\vec{\tau}$  est tangent à la trajectoire en M et orienté dans le sens positif;  $\vec{n}$  est normal à  $\vec{\tau}$  et orienté dans la concavité de la trajectoire.

Dans cette base, le vecteur accélération s'écrit :

$$\vec{a} = a_{\tau} \vec{\tau} + a_{n} \vec{n} = \frac{dV}{dt} \vec{\tau} + \frac{V^{2}}{R} \vec{n} ;$$

 $a_{\text{vec}}: a_{\tau} = \frac{dV}{dt}: \text{accélération tangentielle};$ 

$$a_n = \frac{V^2}{R}$$
 : accélération normale ; R étant le rayon de courbure de la trajectoire.

#### IV) <u>Etude de quelques mouvements particuliers</u>

### 1° Mouvements rectilignes

# 1.1° Mouvement rectiligne uniforme (MRU)

C'est un mouvement pour lequel la vitesse reste constante :

$$V = V_0 = \text{cste} \implies \vec{a} = \frac{d\vec{V}}{dt} = 0.$$

L'équation horaire du mouvement s'écrit :

$$x = V_0 t + x_0$$
,  $x_0$  est l'abscisse de M à  $t = t_0$ .

# 1.2° Mouvement rectiligne uniformément varié (MRUV)

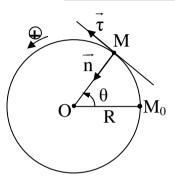
Pour ce type de mouvement, l'accélération est constante. Les équations horaires sont :

- \* Accélération : a = constante ;
- \*  $V_{itesse}$ :  $V = a t + V_0$ ,  $V_0$  vitesse à  $t = t_0$  (vitesse initiale).
- \* Abscisse:  $x = \frac{1}{2} a t^2 + V_0 t + x_0$ ,  $x_0$  position à  $t = t_0$  (position initiale).

#### Remarque:

Pour le MRUV on a : 
$$V^2 - V_0^2 = 2 a \square (x - x_0)$$
.

- ightharpoonup Si le produit  $a \square V > 0$  : le mouvement est **accéléré**.
- $\triangleright$  Si le produit  $a \square V < 0$  : le mouvement est **retardé**.


### 2° Mouvement circulaire uniforme (MCU)

# Fomesoutra.com

## 2.1° Définition

Un mouvement circulaire uniforme est un mouvement qui s'effectue à vitesse constante et dont la trajectoire est un cercle.

### 2.2° Repérage d'un point mobile M



Le point M est repéré par son abscisse curviligne s ou son abscisse angulaire  $\theta$ .

$$s = M_0M$$
 et  $\theta = mes(\overrightarrow{OM_0}, \overrightarrow{OM})$ .  
On a:  $s = M_0M = R \times \theta$ .

# 2.3° Vitesse du point mobile M

\* Vitesse linéaire

$$V(m.s^{-1}) = \frac{ds}{dt} = s = cste.$$

\* Vitesse angulaire

$$\omega (\text{rad.s}^{-1}) = \frac{d\theta}{dt} = \theta = \text{cste.}$$

$$On a: S = R \times \theta \implies \frac{ds}{dt} = R \frac{d\theta}{dt} \implies V = R \theta \quad soit: \qquad V = R \omega$$

### 2.4° Equation horaire

L'équation horaire du mouvement circulaire uniforme est :

$$s = V t + s_0$$
 ou  $\theta = \omega t + \theta_0$ 

### 2.5° Accélération du point mobile M



Fomesoura co

Remarque: a est toujours dirigé vers le centre de la trajectoire : on dit que l'accélération est centripète.

# $2.6^{\circ}$ Période et fréquence du mouvement circulaire uniforme

- \* la période T est la durée d'un tour :  $T = \frac{2\pi}{\omega}$  (s)
- \* La fréquence N est le nombre de tours effectué par seconde ; c'est l'inverse de la période :  $N = \frac{1}{T} = \frac{\omega}{2\pi} \left( Hertz \left( Hz \right) \right).$

\*