Fomesoutra.com

ga svatra

Docs à portée de main : Te D

OG 3: APPLIQUER LES LOIS DE L'ELECTRICITE A L'ETUDE DE QUELQUES CIRCUITS ELECTRONIQUES.

TITRE: OSCILLATIONS ELECTRIQUES LIBRES

Durée : 6 H

Objectif

OS 2 : Etablir l'équation différentielle, sa solution et les caractéristiques

spécifique : d'un circuit LC donné.

Moyens:

Vocabulaire spécifique :

<u>Documentation</u>: Livres de Physique AREX Terminale C et D, Eurin-gié Terminale D. Guide pédagogique et Programme

Amorce:

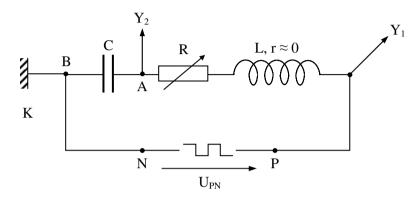
Plan du cours :

- I) Décharge d'un condensateur dans une bobine
 - 1° Etude expérimental
 - 1.1° Montage expérimental
 - 1.2° Observations
 - 1.3° Conclusion
 - 2° Oscillations électriques non amorties dans un circuit LC
 - 2.1° Equation différentielle de décharge
 - 2.2° Solution de l'équation différentielle
 - 2.3° Représentation graphique de la charge q et de l'intensité i
 - 2.4° Energie emmagasinée dans le circuit LC
 - II) Entretien des oscillations

I) <u>Décharge d'un condensateur dans une bobine</u>

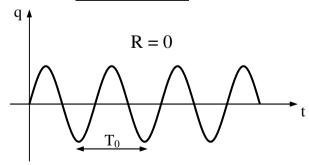
1° Etude expérimental

1.1° Montage expérimental

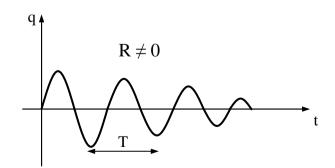


Sur la voie Y_1 de l'oscilloscope, on visualise la tension U_{PN} (tension en créneaux) délivrée par le générateur dans le circuit. La voie Y_2 permet d'observer la variation de la charge q aux bornes du condensateur ($U_C = \frac{q}{C} \implies q = CU_C$) au cours du temps.

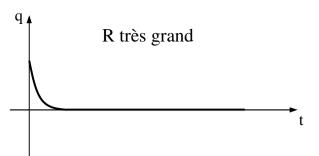
1.2° Observations



- * Oscillations libres
- * Régime périodique (période T₀)



- * Oscillations amorties
- * Régime pseudo-périodique (pseudo-période T)



* Pas d'oscillations

* Régime apériodique

Courbes q = f(t) en fonction de la valeur de la résistance du circuit

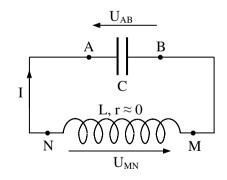
1.3° Conclusion

La décharge d'un condensateur de capacité C dans une bobine d'inductance L donne lieu à :

- des oscillations sinusoïdales de la tension aux bornes du condensateur si la résistance R du circuit est négligeable;
- des oscillations amorties ou à un régime apériodique quand la résistance ${\bf R}$ augmente.

2° Oscillations électriques non amorties dans un circuit LC

2.1° Equation différentielle de décharge



Aux bornes du condensateur : $U_{AB} = \frac{q}{C}$

Aux bornes de la bobine : $U_{MN} = L \frac{di}{dt}$

La loi des mailles \Rightarrow $U_{AB} + U_{MN} = 0$

Or
$$i = \frac{dq}{dt} \Rightarrow \frac{di}{dt} = \frac{d}{dt}(\frac{dq}{dt}) \Rightarrow i = \frac{d^2q}{dt^2} = q$$

Soit
$$Lq + \frac{q}{C} = 0$$
 \Rightarrow $q + \frac{1}{LC}q = 0$

C'est l'équation différentielle de décharge.

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 est la pulsation propre.

Remarque : Analogie oscillateur mécanique – oscillateur électrique

Un circuit oscillant est un oscillateur harmonique de :

- pulsation propre:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
;

- période propre :
$$T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC}$$
;

- fréquence propre :
$$N_0 = \frac{1}{T_0} = \frac{1}{2\pi\sqrt{LC}}$$
.

2.2° Solution de l'équation différentielle

La solution de l'équation différentielle de décharge est de la forme :

$$q(t) = Q_m cos(\omega_0 t + \varphi)$$
, q est appelé charge à l'instant t.

 $Q_m\left(C\right)$ est l'amplitude de charge ou charge maximale, ϕ (rad) la phase à l'origine des dates et $(\omega_0 t + \phi)$ la phase à l'instant t.

Q_m et φ sont des constantes qui dépendent des conditions initiales

2.3° Représentation graphique de la charge q et de l'intensité i

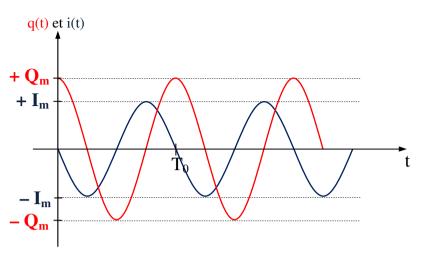
$$q(t) = Q_{m}\cos(\omega_{0}t + \varphi) \implies i = \frac{dq}{dt} = -Q_{m}\omega_{0}\sin(\omega_{0}t + \varphi)$$

$$i = Q_{m}\omega_{0}\cos(\omega_{0}t + \varphi + \frac{\pi}{2})$$

soit
$$i = I_m cos(\omega_0 t + \varphi + \frac{\pi}{2})$$
 avec $I_m = Q_m \omega_0$

Pour
$$\varphi = 0$$
 on a: $q = Q_m \cos(\omega_0 t)$ et $i = I_m \cos(\omega_0 t + \frac{\pi}{2})$

On obtient les représentations graphiques ci-dessous :



Lorsque la charge est extrémale, l'intensité est nulle et lorsque la charge est nulle l'intensité est extrémale. La phase de l'intensité par rapport à la charge est de $+\frac{\pi}{2}$: on dit que

l'intensité i est en quadrature avance sur la charge q.

2.4° Energie emmagasinée dans le circuit LC

L'énergie totale emmagasinée dans le circuit LC à chaque instant est donnée par l'expression : $E = \frac{1}{2}Li^2 + \frac{1}{2}\frac{q^2}{C}$

avec $E_C = \frac{1}{2} \frac{q^2}{C}$ énergie électrostatique du condensateur ;

 $E_m = \frac{1}{2}Li^2$ énergie magnétique de la bobine.

$$\begin{array}{lll} \text{On a:} & q = \ Q_m \text{cos}(\omega_0 t + \phi) & \text{et} & i = - \ Q_m \omega_0 \text{sin}(\omega_0 t + \phi) \\ \\ \Rightarrow & E = \ \frac{1}{2} \ L Q_m^2 \omega_0^2 \text{sin}^2(\omega_0 t + \phi) \ + \ \frac{1}{2} \ \frac{Q_m^2 \text{cos}^2(\omega_0 t + \phi)}{C} \\ \\ \text{Or} & \omega_0 = \ \frac{1}{\sqrt{LC}} \ \Rightarrow \ L \omega_0^2 = \ \frac{1}{C} \quad \text{d'où} \end{array}$$

$$\begin{split} E &= \frac{Q_m^2 sin^2(\omega_0 t + \phi)}{2C} + \frac{Q_m^2 cos^2(\omega_0 t + \phi)}{2C} = \frac{Q_m^2}{2C} [sin^2(\omega_0 t + \phi) + cos^2(\omega_0 t + \phi)] \\ \Rightarrow \quad E &= \frac{Q_m^2}{2C} \quad \text{c'est l'énergie initiale du condensateur chargé} \end{split}$$

En utilisant $I_m = \omega_0 Q_m$, on obtient :

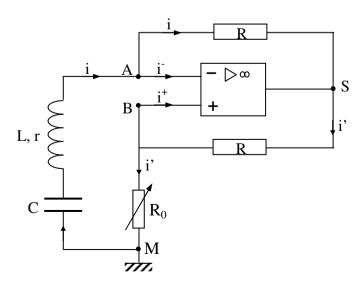
 $E = \frac{1}{2} LI_m^2$ énergie maximale emmagasinée dans la bobine.

L'énergie totale d'un circuit oscillant non résistif se conserve. Il y'a transformation mutuelle d'énergie électrostatique en énergie électromagnétique.

<u>Remarque</u>: Si la résistance du circuit n'est **pas nulle**, l'énergie **diminue** progressivement à cause des **pertes par effet joule** dans la résistance.

II) Entretien des oscillations

Dans la pratique la bobine possède toujours une résistance. Les oscillations sont alors amorties dans le circuit oscillant. Pour entretenir les oscillations il faut placer un **générateur auxiliaire** qui compense l'énergie perdue par effet joule (**ri**²). L'utilisation d'un amplificateur opérationnel selon le dispositif ci-après permet de réaliser cette opération.



On obtient un générateur équivalent à un conducteur ohmique à résistance négative $(-\mathbf{R}_0)$ avec $\mathbf{R}_0 = \mathbf{r}$, r étant la résistance interne de la bobine.

