

DEVOIR N° 5 des SCIENCES PHYSIQUES ET CHIMIQUES

<u>Durée</u> 2 Heures / <u>Niveau</u> : 1^{ère} C

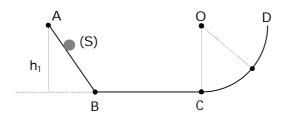
- Devoir du Conseil d'Enseignements EMPT -

Exercice 1 (5 points)

Soit un composé organique D de formule générale $C_xH_yO_z$. La pyrolyse d'une masse m = 3,42 g de D donne une masse m' = 1,44 g de carbone et un volume v = 2,75 L d'eau gazeuse.

- 1. Déterminer la composition centésimale massique de ce composé.
- 2. Calculer les rapports $\frac{x}{z}$ et $\frac{y}{z}$.
- 3. Sachant la combustion complète de 10⁻² mol de D nécessite 1,2. 10⁻¹ mol de dioxygène, déterminer la valeur de z et en déduire la formule brute du composé D.

Masse Molaire atomique en $(g.mol^{-1})$: $M_C = 12$; $M_H = 1$; $M_O = 16$ et volume molaire $v_m = 25$ L.mol⁻¹.

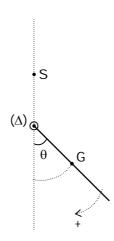

Exercice 2 (5 points)

- 1) Questions de cours :
 - 1.a) Pourquoi dit-on que les alcènes et les alcynes sont des hydrocarbures insaturés ?
 - 1.b) Quelle réaction permet de passer d'un alcyne à un alcane?
 - 1.c) Comment peut-on passer des alcynes aux alcènes?
- 2) Un composé organique de formule C_xH_y est constitué, en masse, de 85,7 % de carbone.
 - 2.a) Calculer le rapport $\frac{y}{x}$. En déduire à quelle famille ce composé appartient, sachant que sa chaîne est ouverte.
 - 2.b) Pour x = 5 donner les formules semi-développées et les noms de tous les isomères. Indiquer lesquels parmi eux peuvent conduire à des stéréo-isomères Z E.
 - 2.c) On s'intéresse aux trois isomères A, B et C donnant par hydrogénation le même alcane ramifié. Quel est cet alcane ? Donner sa formule semi-développée et son nom.

Exercice 3 (5 points)

Un solide ponctuel (S) de masse m=2 Kg descend un plan incliné poli (frottements négligeables) d'une hauteur $h_1=1$ m en partant sans vitesse initiale. Arrivé au bas du plan incliné, il rencontre un plan rugueux horizontal BC où il est soumis à une force de frottement d'intensité f=5 N. En C, il monte sur une surface courbe CD polie de rayon de courbure R=50 cm. La longueur du parcours BC est 2,5 m. On néglige les dimensions du solide (S).

- 1. Quelle est la vitesse de (S) en B?
- 2. Quelle est la vitesse de (S) en C?
- 3. À quelle hauteur h₂ (S) remonte-il sur la surface CD avant de redescendre?
- 4. Quelle est la hauteur du chemin parcouru sur la portion CD?
- 5. Montrer que le solide (S) n'atteint pas le point B en précisant à quel endroit (S) va-t-il finalement s'arrêter?



Exercice 4 (5 points)

Une tige cylindrique homogène de masse m = 400 g et de longueur ℓ = 60 cm est mobile dans un plan vertical autour d'un axe de rotation (Δ) horizontal passant par l'une de ses extrémités. On néglige tout frottement. Le moment d'inertie de la tige par rapport à l'axe (Δ) et J_{Δ} = $m\frac{\ell}{3}$.

- 1. On appelle θ l'abscisse angulaire du centre de gravité G de la tige par rapport à la position d'équilibre stable.
 - Exprimer l'énergie potentielle de pesanteur E_P de la tige en fonction de m, g, ℓ et θ . On choisira la position d'équilibre comme position de référence et l'origine des altitudes confondue avec la position d'équilibre de G.
- 2. On écarte la tige de sa position d'équilibre d'un angle θ_o = 45° dans le sens positif et on l'abandonne sans vitesse initiale.
 - 2.a) Pour quelle position la vitesse angulaire est-elle maximale? Calculer cette vitesse maximale.
 - 2.b) Montrer que le système s'écarte du même angle de 45° de l'autre coté de sa position d'équilibre.
- 3. Après avoir écarté à nouveau d'un angle θ_0 = 45° par rapport à la position d'équilibre, on lui communique une vitesse angulaire ω_0 = 15 rad.s⁻¹ dans le sens positif de rotation (voir schéma).
 - 3.a) Quelle est l'énergie cinétique de la tige au passage de G à la position d'équilibre instable de la tige (point S) et la vitesse angulaire ω_s .
 - 3.b) Quelle est, au cours du mouvement, la valeur de l'énergie cinétique maximale et celle de l'énergie minimale. Préciser les positions correspondantes.

