

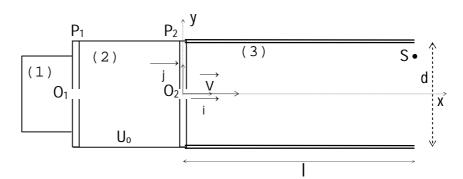
DEVOIR N° 6 des SCIENCES PHYSIQUES ET CHIMIQUES

<u>Durée</u> 2 Heures / <u>Niveau</u> : 1^{ère} C <u>Enseignant</u> : M. E. L. Gnagne

Cette épreuve comporte deux (2) pages numérotées 1/2 et 2/2

<u>Toute calculatrice est autorisée</u>

Exercice 1 (5 points)


- 1. Dans une région de l'espace où tout point M est repéré dans un repère orthogonal (O ; i ; j), on superpose deux champs électrostatiques uniformes. $\overrightarrow{E_1} = 10^3 \overset{\longrightarrow}{i}$ et $\overrightarrow{E_2} = 4.10^3 \overset{\longrightarrow}{j}$.
 - a) Montrer qu'en tout point de cette région, il existe un champ électrostatique.

Déterminer sa valeur E et l'angle $\alpha = (\overrightarrow{i}; E)$

- b) Calculer la force électrostatique subie par un ion Cu^{2+} placé en un point de ce champ. On donne la charge élémentaire $e=1,6.10^{-19}$ C
- 2. Dans la partie (1) du montage (voir figure ci-dessous), le potassium est ionisé en ions ^AK⁺ et sa masse est m. Ils pénètrent avec une vitesse considérée comme négligeable par l'orifice O₁ dans une chambre(2) où la tension établie en P₁ et P₂ les accélère.
 Ils ressortent par l'orifice O₂ et pénètrent alors dans une autre enceinte (3) où règne un champ électrique uniforme E . Déviés de leur trajectoire, ils ressortent enfin de l'enceinte (3) au point S.
 NB : le poids de l'ion est négligeable devant la force électrostatique.
 - a) Représenter sur un schéma le champ $\overrightarrow{E_0}$ régnant entre P_1 et P_2 . Justifier
 - b) Préciser le signe de $U_0 = V_{P1} V_{P2}$. Justifier
 - c) Exprimer la vitesse V des ions ${}^AK^+$ en O_2 et la calculer.
- Fomesouta com

 Docs à portée de main
- d) Représenter sur un schéma le champ E . Justifier
- e) Donner les coordonnées de la ligne équipotentielle électrique élevé du champ E
- f) Exprimer la vitesse V_S des ions ^AK⁺ en S et la calculer.

On donne dans tout l'exercice : masse d'un nucléon = 1,67. 10^{-27} Kg , La charge électrique élémentaire : $e=1,6.10^{-19}$ C La tension $U_0=10^4$ V.

Exercice 2 (5 points)

On associe en série une batterie d'accumulateur de f.é.m. E = 12 V et de résistance interne r = 1 Ω , un conducteur ohmique de résistance R = 5 Ω , un ampèremètre de résistance négligeable, un moteur de f.c.é.m. E' et de résistance interne r' inconnue.

- 1. Quand on empêche le moteur de tourner, I = 1,5 A. Quand le moteur tourne I = 0,5 A. Calculer E' et r'.
- 2. Calculer la puissance mécanique du moteur.
- 3. Sachant qu'il tourne à raison de 500 tours/min, calculer :
 - a) le moment du couple moteur qu'il exerce.
 - b) la puissance électrique qu'il consomme et son rendement.

Exercice 3 (5 points)

L'hydrolyse d'un ester A conduit à deux composés B et C. Le composé B peut-être obtenu par oxydation de C pare l'oxygène de l'air en présence de cuivre. La molécule de B contient un noyau benzénique et sa masse molaire est 122 g.mol⁻¹.

Établir les formules semi-développées et les noms des composés A, B et C.

On donne: $M_C = 12 \text{ g/mol}$; $M_H = 1 \text{ g/mol}$; $M_O = 16 \text{ g/mol}$; $M_N = 14 \text{ g/mol}$; $M_{C\ell} = 35.5 \text{ g/mol}$.

Exercice 4 (5 points)

L'hydrolyse d'un ester A donne naissance au cours d'une réaction lente à un corps B et un corps C.

- 1 a) La combustion complète d'une mole de B de formule $C_xH_yO_z$ d'une part nécessite 6 moles de dioxygène et d'autre part produit uniquement 90 g d'eau et 176 g de dioxyde de carbone CO_2 . Écrire l'équation de la réaction et déterminer la formule brute de B.
- b) L'oxydation ménagée de B ne conduit qu'à un seul corps B'. I ndiquer les noms et formules développées de B et B' sachant que B n'est pas ramifié. Quelle est l'action de B' :
 - sur une solution de 2,4-dinitrophénylhydrazine?
 - sur une solution de nitrate d'argent ammoniacal ou réactif de Tollens ?
- 2 En présence de PCI_5 on peut transformer le corps C en un corps C' : CH_3 C (le Chlorure d'éthanoyle) sans toute fois modifier sa chaîne carbonée. Donner la formule semi-développée du corps C et le nommer.
- 3 a) Écrire l'équation de la réaction de l'hydrolyse de A avec les formules semi-développées.
 - b) Donner le nom de A.

On donne: $M_C = 12 \text{ g/mol}$; $M_H = 1 \text{ g/mol}$; $M_O = 16 \text{ g/mol}$; $M_N = 14 \text{ g/mol}$; $M_{C\ell} = 35,5 \text{ g/mol}$.

