

Problème6

Le but du problème est d'étudier la position relative de deux courbes et de calculer l'aire du domaine plan

compris entre ces dernières. Le plan est rapporté à un repère orthogonal $(O; \vec{i}; \vec{j})$ d'unités graphiques 5cm sur l'axe des abscisses et 4cm sur l'axe des ordonnées.

Sur la feuille réponse ci-jointe (cf. en dernière page), ont été tracées les courbes représentatives C et Γ respectivement des deux fonctions f et g, définies pour tout réel x de l'intervalle [0, 3], Par :

 $f(x) = x - \ln x$ et $g(x) = x - (\ln x)^2$

Partie 1 : Étude des fonctions f et g.

- 1. (a) Déterminer, en justifiant vos calculs, la limite de f en 0. Que peut-on en déduire pour la courbe C?
 - (b) On désigne par f' la fonction dérivée de f sur] 0, 3]. Calculer f'(x) et dresser le tableau de variation de f sur] 0, 3].
- 2. On désigne par g ' la fonction dérivée de g sur] 0, 3]. Calculer g '(x). En admettant que (x –2ln x) est positif sur] 0, 3], en déduire que g est strictement croissante sur] 0, 3].
- 3. Désigner sur la feuille-réponse (cf. ci-dessous), la courbe C et la courbe Γ .

Partie 2: Position relative des deux courbes.

- 1. (a) Résoudre sur]0, 3], l'équation g(x) = f(x).
 - (b) En déduire les coordonnées des points d'intersection M et N des courbes C et Γ . Placer M et N sur la feuille-réponse.
- 2. (a) Résoudre sur]0, 3], l'inéquation $g(x) \ge f(x)$.
- (b) En déduire la position relative des courbes C et Γ sur l'intervalle [1, e].

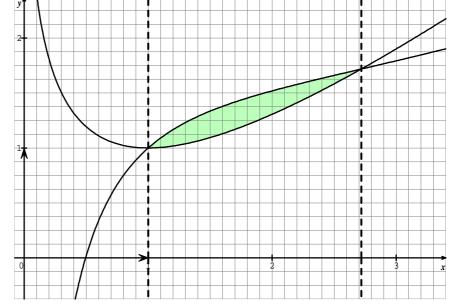
Partie 3: Calcul d'une aire.

On désigne par D l'ensemble des points M(x, y) du plan tels que : $1 \le x \le e$ et $f(x) \le y \le g(x)$

et par *A* son aire exprimée en cm². On admet que, en unités d'aire,

on a:
$$\int_{1}^{e} (g(x) - f(x)) dx$$
.

- 1. Hachurer D sur la feuille-réponse.
- 2. Soit la fonction *H* définie sur [1, e] par: $H(x) = -x(\ln x)^2 + 3 x \ln x 3x$.
- a) Vérifier que la fonction H est une primitive de la fonction (g-f) sur [1, e].
- b) Calculer, en unités d'aire, la valeur exacte de A.
- c) En donner une valeur approchée au mm² près par excès.



PROBLEME 7

Partie A

On considère la fonction g définie sur l'intervalle I =] 0; $+\infty$ [par : $g(x) = -4 \ln x + x^2 + 6$ (où ln désigne le logarithme népérien).

- 1.a. Calculer g'(x) pour tout $x \in]0; +\infty[$.
 - b. Montrer que g'(x) = 0 sur I pour la seule valeur

 $x = \sqrt{2}$.

х	0	$\sqrt{2}$	+∞
g'(x)	_	0	+
g(x)		$g(\sqrt{2})$	*

- c. Etudier le signe de g'(x) sur I.
- d. montrer que le tableau de variation de la fonction g est donné par
- 2. a. Calculer la valeur exacte de $g(\sqrt{2})$.
 - b. Montrer que g est fonction positive sur l'intervalle I
- c. Etudier les limites de g(x) en 0 et en $+\infty$, et donner le tableau de variation complet de la fonction g.

Partie B

On se propose d'étudier la fonction f définie sur] 0; $+\infty$ [par : $f(x) = \frac{x}{4} - \frac{1}{2x} + \frac{\ln x}{x}$

On note C la courbe représentative de f dans un repère orthogonal $(O; \overrightarrow{i}; \overrightarrow{j})$ d'unités graphiques : 4 cm .

- 1. Calculer $\lim_{x\to 0^+} f(x)$. En déduire l'existence d'une asymptote que l'on précisera.
- 3. Calculer $\lim_{x \to +\infty} f(x)$. (Etudier la limite de la fonction f lorsque x tend vers $+\infty$).

4. soit (Δ) la droite d'équation $y = \frac{x}{4}$. On considère la fonction h définie sur]0; $+\infty[$ par $h(x) = f(x) - \frac{x}{4}$.

- a. Démontrer que (Δ) est asymptote à la courbe C.
- b. Calculer les coordonnées du point d'intersection de C et Δ
- c. Etudier la position relative de C et Δ sur]0; $+\infty[$
- 5. a. Calculer f'(x) pour tout $x \in]0$; $+\infty[.f']$ est la fonction dérivée de la fonction f
 - b. Vérifier que pour tout x de]0; $+\infty$ [: $f'(x) = \frac{g(x)}{4x^2}$.
 - c. Déduire de la partie A le sens de variation de f sur]0; $+\infty[$.
- 6. Déterminer une équation de la tangente (T) à la courbe C au point A d'abscisse 1.
- 7. Tracer C, (T) et les asymptotes à la courbe C dans le repère (0; i; j).
- 8. Démontrer qu'il existe un seul réel α de l'intervalle [1;2] tel que $f(\alpha)=0$.
- à l'aide de la calculatrice et en justifiant votre réponse Donner une valeur approchée de α à 10^{-3} près.

Partie C:

Soit *k* la fonction définie sur l'intervalle] 0; $+\infty$ [par $k(x) = (\ln x)^2$

- 1. On désigne par k' la fonction dérivée de la fonction k . Calculer k'(x) pour tout réel x de l'intervalle] 0; $+\infty$ [.
- 2. En déduire une primitive H de la fonction h sur l'intervalle]0; $+\infty$ [qui s'annule quand x vaut 1.
- 3. Résoudre dans \square l'équation u(u+1)=0, et en déduire les solutions de H(x)=0 dans l'intervalle I.
- 4/ On considère la fonction h définie sur 0; $+\infty$ [par $h(x) = -\frac{1}{2x} + \frac{\ln x}{x}$.
 - a. En remarquant que $\frac{\ln x}{x}$ est de la forme u'(x).u(x), déterminer une primitive H de h.
- b. Hachurer sur le graphique la partie E du plan limitée par la courbe C , la droite D et les droites d'équation $x=\sqrt{e}$ et x=e.
 - c. Calculer en cm², l'aire du domaine plan limité par la courbe C , la droite D et les droites d'équation $x = \sqrt{e}$ et x = e. Donner la valeur exacte .

PROBLÈME 8

Partie A

1) On considère la fonction f définie sur l'intervalle] 0; $+\infty$ [par : $f(x) = ax^2 + bx - 2\ln x$, où a et b sont deux nombres réels. On appelle C la représentation graphique de f dans le plan muni d'un repère orthogonal $(O; \vec{i}; \vec{j})$ d'unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

Sachant que la courbe C passe par le point A (1; $-\frac{13}{2}$) et que le coefficient directeur de la tangente en

A est égal à -6, Déterminer les valeurs des nombres a et b.

- 2) Pour la suite du problème, on prendra $f(x) = -2 \ln x + \frac{5}{2}x^2 9x$.
- a) Déterminer la limite en 0 de la fonction f. Que peut-on en déduire pour la courbe C ?
- b) Vérifier que l'on peut écrire : $f(x) = x^2 \left(-2 \frac{\ln x}{x} + \frac{5}{2} \frac{9}{x} \right)$. En déduire la limite en $+\infty$ de la fonction f.

Partie B

- 1) On désigne par f' la fonction dérivée de J sur l'intervalle $]0; +\infty[$.
- a) Calculer f'(x).
- b) Étudier le signe de f'(x).

- c) Dresser le tableau de variation de la fonction J sur l'intervalle $]0; +\infty$
- 2) a) Démontrer que, dans l'intervalle [3; 4], l'équation f(x) = 0 admet une unique solution, notée α .
- b) Donner, à l'aide de la calculatrice, un encadrement d'amplitude 0,01 de α .
- 3) Déterminer une équation de la droite D tangente à la courbe C au point d'abscisse 1.
- 4) Tracer dans le repère $(O; \vec{i}; \vec{j})$ la droite \mathcal{D} et la courbe \mathbb{C} .

Partie C

- 1) On considère la fonction g définie sur l'intervalle]0; $+\infty$ [par : $g(x) = x \ln x x$. Expliciter la dérivée g' de la fonction g.
- 2) Déduire de la question précédente une primitive F de la fonction J sur l'intervalle] 0; $+\infty$ [.
- 3) On appelle A la partie du plan située entre la courbe, l'axe des abscisses et les droites d'équations $x = \alpha$ et x = 5 (α est défini à la question B. 2). Hachurer sur la figure la partie A.
- b) On désigne par A l'aire, en unités d'aire, de la partie A. Calculer A en fonction de α puis calculer une valeur approchée de A en prenant 3,88 comme valeur approchée de α .

Problème 9

<u>Partie A</u> On considère la fonction g définie sur]0; $+\infty$ [par $g(x) = -2x^2 - 1 + \ln x$.

- 1. Calculer g'(x) pour tout x de]0; $+\infty$ [. Étudier son signe sur]0; $+\infty$ [.
- 2. Dresser le tableau de variations de g sur]0; $+\infty$ [. (On ne demande pas les limites de g aux bornes de son ensemble de définition).
- 3. En déduire que pour tout x de]0; $+\infty$ [, g(x) < 0.

Partie B Soit f la fonction définie sur] 0;
$$+\infty$$
 [par $f(x) = -x + 1 - \frac{1}{2} \times \frac{\ln x}{x}$.

On désigne par C sa courbe représentative dans le plan muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$ d'unités graphiques 2 cm sur l'axe des abscisses et 2 cm sur l'axe des ordonnées.

- 1. a. Calculer la limite de f en 0. Interpréter graphiquement ce résultat.
 - b. Calculer la limite de f en $+\infty$.
 - c. Démontrer que la droite Δ d'équation y = -x + 1 est asymptote à la courbe C.
 - d. Étudier la position relative de C et Δ sur]0; $+\infty$ [.
- 2. a. Calculer f'(x) pour tout x > 0. Vérifier que pour tout x de]0; $+\infty$ [, $f'(x) = \frac{g(x)}{2x^2}$.
 - c. Déduire de la partie A. le tableau de variations de f sur]0; $+\infty$ [.
 - d. Calculer f(1). En déduire le signe de f sur]0; $+\infty$ [.
- 3. Dans le plan muni du repère $(O; \vec{i}, \vec{j})$, tracer la droite Δ et la courbe C.

Partie C

- 1. Vérifier que la fonction F définie sur]0; $+\infty$ [par $F(x) = -\frac{1}{2}x^2 + x \frac{1}{4}(\ln x)^2$ est une primitive de f.
- 2. a. Hachurer sur le graphique la partie E du plan limitée par la courbe C, l'axe des abscisses et les droites d'équations x = 1 et x = e.
 - b. Calculer la valeur exacte de l'aire en cm², de la partie E, puis en donner la valeur arrondie au mm² près.

Partie D

- 1. Résoudre l'équation f'(x) = -1
 - En déduire l'existence d'une unique tangente T à C parallèle à Δ , préciser les coordonnées du point de contact J et l'équation de cette tangente T . Tracer T dans le repère précédent.
- 2. Soit x un réel supérieur ou égal à 1. M et N sont les points d'abscisse x situés respectivement sur C et sur Δ .
- a. Préciser, en fonction de x, la valeur de la distance \overline{MN} .
- b. Etudier sur [1; $+\infty$ [les variations de la fonction h définie sur [1; $+\infty$ [par $h(x) = \frac{1}{2} \times \frac{\ln x}{x}$.
- c. Déduire des questions précédentes que la distance MN est maximale lorsque M est en J et préciser la valeur de cette distance maximale.

Problème10

Soit g la fonction définie sur $]0;+\infty[$ par $g(x) = -x + \ln x$ (où ln désigne le logarithme népérien).

- 1. Résoudre dans l'intervalle $]0;+\infty[$ l'équation g(x)=0.
- 2. Résoudre dans l'intervalle $]0;+\infty[$ l'inéquation g(x) > 0.

Partie II

Soit f la fonction définie sur]0;+ ∞ [par $f(x) = -\frac{3}{4}x^2 + \frac{1}{2}x^2 \ln x$.

On appelle G la courbe représentative de f dans un repère orthonormal $(0; \vec{i}; \vec{j})$ (unités : 2cm).

- 1. Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 0} f(x)$. 2. Montrer que f'(x) = g(x). Utiliser les résultats de la partie **I** pour établir le tableau de variation de f.
- 3. Calculer $f(e^{3/2})$. On fera apparaître le détail des calculs.
- 4. Soit A le point d'abscisse 1 de G. Déterminer une équation de la tangente (T) en A à la courbe G.
- 5. Tracer dans un repère $(O; \vec{i}; \vec{j})$ la tangente (T) ainsi que la partie de la courbe G relative à l'intervalle]0;6].
- 6. Soit F la fonction définie sur]0;+ ∞ [par $F(x) = \frac{1}{6}x^3 \ln x \frac{11}{36}x^3$.
- a. Montrer que F est une primitive de f sur $]0;+\infty[$.
- b. Calculer en cm² l'aire du domaine limité dans le repère $(O; \vec{i}; \vec{j})$ par la courbe G, l'axe des abscisses et les droites d'équations x = 1 et x = e. On en donnera la valeur exacte puis une valeur approchée à 10^{-2} près.