

Problème 10 cor

La fonction g est définie sur $]0;+\infty[$ par $g(x) = -x + \ln x$.

- 1. $g(x) = 0 \Leftrightarrow -x + x \ln x = 0 \Leftrightarrow x(-1 + \ln x) = 0 \Leftrightarrow -1 + \ln x = 0$ puisque $x \neq 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e$.
- 2. $g(x) > 0 \Leftrightarrow -x + x \ln x > 0 \Leftrightarrow x(-1 + \ln x) > 0 \Leftrightarrow -1 + \ln x > 0$ puisque $x > 0 \Leftrightarrow \ln x > 1 \Leftrightarrow x > e$

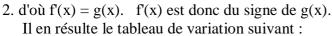
PARTIE II

La fonction f est définie sur]0;+ ∞ [par $f(x) = -\frac{3}{4}x^2 + \frac{1}{2}x^2 \ln x$

1
$$f(x) = x^2(-\frac{3}{4} + \frac{1}{2}\ln x)$$
. $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} (-\frac{3}{4} + \frac{1}{2}\ln x) = +\infty$ donc : $\lim_{x \to +\infty} f(x) = +\infty$

$$\lim_{x \to 0} \frac{-3}{4} x^2 = 0 \quad \text{et} \quad \lim_{x \to 0} \frac{1}{2} x^2 \ln x = 0 \quad \text{donc} : \lim_{x \to 0} f(x) = 0$$

$$f'(x) = -\frac{3}{2}x + x\ln x + \frac{1}{2}x^2 \cdot \frac{1}{x} \quad f'(x) = -\frac{3}{2}x + x\ln x + \frac{1}{2}x$$
$$f'(x) = -x + x\ln x$$



3.
$$f(e^{3/2}) = -\frac{3}{4}e^3 + \frac{1}{2}e^3 \ln e^{3/2}$$
 $f(e^{3/2}) = -\frac{3}{4}e^3 + \frac{3}{4}e^3 = 0$
d'où: $f(e^{3/2}) = 0$

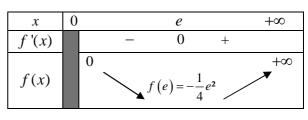
4.L'équation de la tangente (T) en A à la courbe (G) est :
$$y - f(1) = f'(1)(x-1)$$
 avec $f(1) = -3/4$ et $f'(1) = -1$.On a donc : $y + 3/4 = -(-x-1)$ $y = -x + 1 + 3/4$ $y = -x + 1/4$

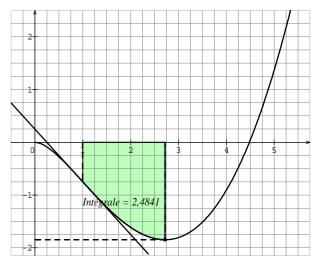
5. Tableau de valeurs:

X	0,5	1	2	3	4	5	6
f(x)	-0,27	-0,75	-1,6	-1,8	-0,9	1,4	5,2

Voir courbe ci-contre:

6.a.
$$F(x) = \frac{1}{6}x^3 \ln x - \frac{11}{36}x^3$$
. Pour montrer que F est une





primitive de f sur $]0;+\infty[$, il suffit de montrer que F'(x)=f(x).

On a:
$$F'(x) = \frac{1}{2}x^2 \ln x + \frac{1}{6}x^3 \cdot \frac{1}{x} - \frac{11}{12}x^2$$
; $F'(x) = \frac{1}{2}x^2 \ln x + \frac{1}{6}x^2 - \frac{11}{12}x^2$; $F'(x) = \frac{1}{2}x^2 \ln x - \frac{3}{4}x^2$.

Donc F est bien une primitive de f sur $]0;+\infty[$.

b.
$$-\int_1^e f(x)dx$$
 car G est située en dessous de l'axe des abscisses

$$[-F(x)]_{1}^{e} = F(1) - F(e) = -\frac{11}{36} - \left(\frac{1}{6}e^{3} - \frac{11}{36}e^{3}\right) = \frac{5e^{3} - 11}{36} \times 4 = \frac{5e^{3} - 11}{9}cm^{2} = 9,94 \text{ cm}^{2} \text{ à } 0.01 \text{ près.}$$