

Condensateur

Points de cours

Explications ou utilisations

Un condensateur est composé de deux armatures métalliques séparé par un isolant appelé diélectrique. Si une armature se charge positivement, l'autre est forcément chargée négativement.

Son symbole est le suivant : -

On aura $q_A = -q_B \circ \dot{u}$ q est la charge des armatures en coulomb (C)

Relation entre l'intensité du courant et la charge:

L'intensité du courant est un débit de charge électrique

i : intensité du courant en Ampères (A)

q : charge de l'armature en Coulombs (C)

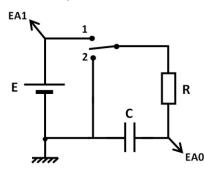
t: temps en secondes (s)

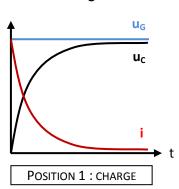
D'après cette relation, on peut trouver la valeur de i en calculant le coefficient directeur de la courbe q=f(t)

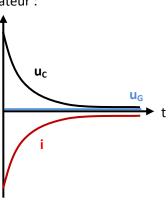
Relation entre la charge et la tension aux bornes d'un condensateur :

 $\boxed{ \mathbf{q} = \mathbf{C} \times \mathbf{u}_{\mathbf{C}} } \left\{ \begin{array}{l} \text{C} : \text{Capacit\'e du condensateur en Farads (F)} \\ \text{q} : \text{charge de l'armature positive en Coulombs (C)} \\ \text{u}_{\mathbf{C}} : \text{tension aux bornes du condensateur en Volts (V)} \end{array} \right.$

Etude expérimentale de la charge et de la décharge d'un condensateur :







Position 2 : Decharge

- Etude théorique de la charge d'un condensateur à travers une résistance : On prend le montage schématisé ci-dessus, interrupteur en position 1:
- ✓ Loi des mailles : $u_C + R \times i = E$
- ✓ Or q = C×u_C et i = $\frac{dq}{dt}$ donc i = C× $\frac{du_C}{dt}$

ďoù

 $|u_{\rm C} + RC \times \frac{du_{\rm C}}{du_{\rm C}} = E$ différentielle en $u_{\rm C}$ de la charge du condensateur

Pour la **décharge**, il suffit de remplacer le E par 0 dans l'écriture de la loi des mailles car la maille ne contient plus que le condensateur et la résistance.

On obtient l'équation :

$$u_{c} + RC \times \frac{du_{C}}{dt} = 0$$

Equation différentielle en uc de la décharge du condensateur

Vérification de la validité d'une solution de charge :

On se propose de vérifier que la solution u_{c} = A + B× $e^{-\frac{\tau}{\tau}}$ satisfait à l'équation ci-dessus. A, B et τ sont des constantes que nous allons déterminer.

- ✓ On dérive une fois cette solution : $\frac{du_C}{dt} = 0 \frac{B}{\tau}e^{-\frac{t}{\tau}}$
- ✓ On remplace $\frac{du_C}{dt}$ et u_c dans l'équation différentielle:

$$A + B \times e^{-\frac{t}{\tau}} - RC \times \frac{B}{\tau} e^{-\frac{t}{\tau}} = E$$

$$\Leftrightarrow$$
 A + B(1 - $\frac{RC}{\tau}$) $e^{-\frac{t}{\tau}}$ = E

Cette équation doit être vraie quelque soit t, ce qui implique:

$$1 - \frac{RC}{\tau} = 0 \iff \tau = RC \text{ et } A = E$$

Aussi on connaît une condition initiale: $u_c(t=0) = 0 \text{ donc } A + B = 0 \text{ d'où } B = -A = -E$

Finalement:
$$u_c = E \times \left(1 - e^{-\frac{t}{RC}}\right)$$

Relation intensité-tension :

$$i = \frac{dq}{dt}$$
 et q=C×u_C

$$i=C \times \frac{du_C}{dt}$$

Utilisation de celle-ci :

A partir de la solution de charge en u_C, on peut obtenir l'intensité du courant lors de la charge en dérivant :

$$i=C \times \frac{du_C}{dt} = \frac{E}{R}e^{-\frac{t}{RC}}$$

Constante de temps : déterminations et propriétés :

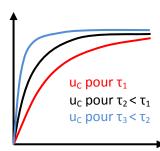
La constante de temps a pour expression τ =RC. Comme son nom l'indique, sa dimension est un temps (unité : seconde (s)).

On peut la déterminer :

- ii. Sur la courbe de charge u_c=f(t) en regardant l'abscisse qui correspond à une ordonnée de 0.63×E.
- iii. Sur la courbe de charge u_c=f(t) en regardant l'abscisse du point d'intersection entre la tangente à l'origine et l'asymptote de $u_c(t)$ quand t tend vers l'infini.



- ✓ La constante de temps a la même valeur pour la charge et pour la décharge.
- ✓ Plus la constante de temps est grande plus le condensateur met de temps à se charger ou à se décharger.



Energie emmagasinée dans le condensateur :

$$\mathsf{E}_\mathsf{C} = \frac{1}{2} \times C \times u_C^2$$

 $E_{C} = \frac{1}{2} \times C \times u_{C}^{2}$ $\begin{cases}
E_{C} : \text{ Energie emmagasin\'ee en Joules (J)} \\
C : \text{ Capacit\'e du condensateur en Farad (F)} \\
u_{C} : \text{ tension aux bornes du condensateur en Volts (V)}
\end{cases}$

Bobine

Points de cours

Explications ou utilisations

• Une bobine est constituée à partir d'un enroulement très serré de fil de cuivre qui est gainé sur un matériau isolant.

Son symbole électrique est le suivant :

En effet, tout enroulement de fil de cuivre possède une résistance : on l'appellera **résistance interne** de la bobine.

• Expression de la tension aux bornes de la bobine :

 $u_L = r \times i + L \times \frac{di}{dt}$

 u_L : tension aux bornes de la bobine en Volts (V)

i : intensité du courant en ampère (A)

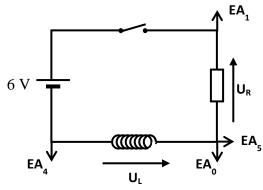
di/dt : dérivée par rapport au temps de l'intensité dans le circuit en ampère par seconde (A.s⁻¹)

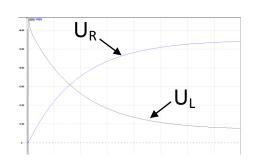
L : Inductance de la bobine exprimée en Henry (H)

 $\ \ r:$ résistance interne de la bobine en Ohm (Ω)

En régime permanent, la bobine se comporte comme une r ésistance, elle n'est donc « intéressante » qu'en régime transitoire (lorsque l'intensité du courant varie).

• Etude expérimentale de l'établissement du courant dans un circuit coportant une bobine :





Comme $U_R = R \times i$, La fonction intensité du courant i=f(t) a la même forme que $U_R=f(t)$

• Etude théorique de l'établissement du courant :

On prend le montage schématisé ci-dessus, interrupteur fermé :

✓ Loi des mailles : U_L + R×i = E

✓ Or $U_L = L \times \frac{di}{dt}$ si la résistance interne de la

bobine est négligée.

d'où
$$L \times \frac{di}{dt} + R \times i = E$$
 et $i + \frac{L}{R} \frac{di}{dt} = \frac{E}{R}$

Pour la **rupture du courant**, il suffit de remplacer le E par 0 dans l'écriture de la loi des mailles. On obtient l'équation :

$$1 + \frac{L}{R} \frac{di}{dt} = 0$$

• Vérification de la validité d'une solution pour l'établissement du courant :

On se propose de vérifier que la solution i = A + B× $e^{\frac{-\tau}{\tau}}$ satisfait à l'équation ci-dessus. A, B et τ sont des constantes que nous allons déterminer.

✓ On dérive une fois cette solution : $\frac{di}{dt} = 0 - \frac{B}{\tau}e^{-\frac{t}{\tau}}$

✓ On remplace $\frac{di}{dt}$ et i dans l'équation

différentielle :

$$A + B \times e^{-\frac{t}{\tau}} - \frac{L}{R} \times \frac{B}{\tau} e^{-\frac{t}{\tau}} = \frac{E}{R}$$

$$\Leftrightarrow$$
 A + B(1 - $\frac{L}{R \times \tau}$) $e^{-\frac{t}{\tau}} = \frac{E}{R}$

Cette équation doit être vraie quelque soit t, ce qui

$$1 - \frac{L}{R \times \tau} = 0 \iff \tau = \frac{L}{R} \text{ et } A = \frac{E}{R}$$

Aussi on connaît une condition initiale:

$$i(t=0) = 0 \text{ donc } A + B = 0 \text{ d'où } B = -A = -\frac{E}{R}$$

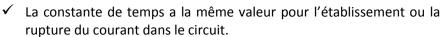
Finalement:
$$i = \frac{E}{R} \times \left(1 - e^{-\frac{R}{L} \times t}\right)$$

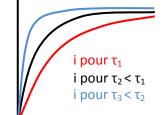
0.63×(E/R)

- Constante de temps : déterminations et propriétés :
- La constante de temps a pour expression τ =L/R. Comme son nom l'indique, sa dimension est un temps (unité: seconde (s)).

On peut la déterminer :

- i. Par le calcul, avec R en Ohm et L en Henry.
- ii. Sur la courbe de charge i=f(t) en regardant l'abscisse qui correspond à une ordonnée de 0.63×(E/R).
- iii. Sur la courbe de charge i=f(t) en regardant l'abscisse du point d'intersection entre la tangente à l'origine et l'asymptote de i(t) quand t tend vers l'infini.





- ✓ Plus la constante de temps est grande plus le l'établissement du courant est lent.
- Energie emmagasinée dans le condensateur :

$$E_{C} = \frac{1}{2} \times L \times i^{2}$$

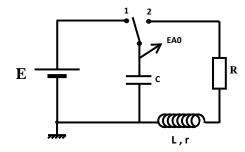
E_L: Energie emmagasinée en Joules (J)
L: Inductance de la bobine en Henry (H)
i: Intensité du courant dans le circuit en Ampère (A)

Oscillations électriques : circuit RLC

Points de cours

Explications ou utilisations

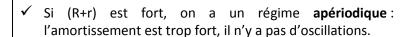
Etude expérimentale des oscillations électriques :

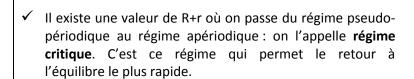


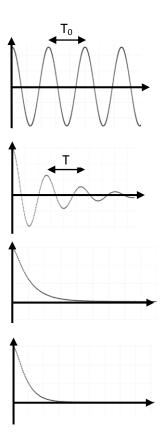
4 régimes sont alors possibles :

Il y a **amortissement des oscillations par effet Joule** dans les résistances du circuit : selon la valeur de la résistance globale (R+r), on peut obtenir 4 régimes :

- ✓ Si (R+r)=0, on a un régime **périodique** : pas d'amortissement des oscillations. (Période propre des oscillations : T₀)
- ✓ Si (R+r) est faible, on a un régime pseudo-périodique : les oscillations sont faiblement amorties.
 (Pseudo-période des oscillations : T≈T₀)

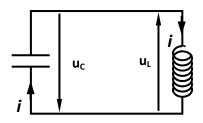






• Etude théorique de l'oscillateur non amorti :

- ✓ D'après la loi des mailles : $u_c + u_L = 0$
- \checkmark Or $u_L = L \times \frac{di}{dt}$ avec $i = \frac{dq}{dt} = C \times \frac{du_C}{dt}$ d'où $u_L = LC \frac{d^2u_C}{dt^2}$
- $\checkmark \text{ Finalement: } \frac{d^2u_C}{dt^2} + \frac{1}{LC} \times u_C = 0$



• Vérification de la validité d'une solution pour la tension aux bornes du condensateur :

On veut vérifier que $u_C = U_m \times \cos{(\omega_0 t + \varphi)}$ est solution de l'équation différentielle précédente ; U_m , ω_0 et φ sont trois constantes à déterminer.

✓ On dérive une fois u_c, puis une deuxième fois :

$$\frac{du_C}{dt} = -\omega_0 \times U_m \times \sin(\omega_0 t + \phi) \quad \text{puis}$$

$$\frac{d^2u_C}{dt^2} = -\omega_0^2 \times U_m \times \cos(\omega_0 t + \phi) = -\omega_0^2 \times u_C$$

✓ On remplace dans l'équation différentielle :

$$\left(\frac{1}{LC} - \omega_0^2\right) \times u_C = \left(\frac{1}{LC} - \omega_0^2\right) \times U_m \times \cos(\omega_0 t + \varphi) = 0$$

soit t ce qui impose
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

On appelle ω_0 la **pulsation propre** des oscillations électriques. Elle s'exprime en rad.s⁻¹.

✓ Ainsi la solution proposé vérifie bien l'équation différentielle.

• Expression de la période propre des oscillations :

Celle-ci est reliée à la pulsation propre : $T_0 = \frac{2}{a}$

Et ainsi:

$$T_0 = 2\pi \sqrt{LC}$$

Avec L en H et C en F)

- Obtention des deux autres constantes de la solution (grâce aux conditions initiales) : Trouvons les valeurs de U_m et φ connaissant les conditions initiales suivantes : $u_c(t=0) = E$ et i(t=0)=0.
- ✓ La première condition intiale nous permet d'écrire : $U_m \times \cos \phi = E$ (1)
- ✓ La deuxième condition nous pemet d'écrire : $\omega_0 \times U_m \times \sin \phi = 0$ (2)
- (2): ω_0 et U_m ne peuvent pas être nuls, on a sin $\phi = 0$ d'où $\phi = 0$

En remplaçant dans (1), on obtient $U_m=E$

La solution s'écrit donc :

$$u_c = E \times \cos(\omega_0 t)$$

• Aspects énergétiques :

Analysons ces aspects pour un régime pseudo-périodique :

- ✓ L'énergie totale (E_C+E_L) décroît au cours du temps, cette énergie étant progressivement dissipée par effet joules dans la résistance globale du circuit.
- ✓ Il s'effectue un **transfert d'énergie du condensateur dans la bobine puis de la bobine dans le condensateur** et ainsi de suite. Quand E_C est maximale alors E_L est nulle et quand E_C est nulle E_L est maximale.
- ✓ Pour entretenir ces oscillations amorties et obtenir ainsi un régime périodique, il faut apporter, par un dispositif externe, la même quantité d'énergie que celle perdue par effet Joule.