

BACCALAURÉAT SESSION 2013

Coefficient : 4 Durée : 4 h

MATHÉMATIQUES

SÉRIE D

Cette épreuve comporte trois (03) pages numérotées 1/3, 2/3 et 3/3. Chaque candidat recevra trois (03) feuilles de papier millimétré Toute calculatrice scientifique est autorisée.

EXERCICE 1 (4 points)

Dans le plan muni d'un repère orthonormé direct (O, I, J), on désigne par K, A et B les points d'affixes respectives $z_1 = 2$, $z_2 = 4 + 2i$ et $z_3 = 2 + 4i$. L'unité graphique est 2 cm.

- a) Placer les points K, A et B.
 - b) Déterminer la forme algébrique du nombre complexe $\frac{z_3 z_1}{z_2 z_1}$.
- 2- On note S la similitude directe de centre K qui transforme A en B.
 - a) Démontrer que l'écriture complexe de S est : z' = (1 + i)z 2i.
 - b) Déterminer les affixes respectives des points I' et J', images respectives des points I et J puis placer I' et J'.
- 3- Déterminer le rapport et une mesure de l'angle orienté de la similitude directe S.
- 4- Soit (C) le cercle de centre $\Omega(1; 1)$ et de rayon 2.
 - a) Tracer (C).
 - b) Déterminer le centre et le rayon de (C'), image de (C) par S.
 - c) Construire (C').
- 5- a) Déterminer puis construire l'image par S de la droite (IJ).
 On pourra caractériser l'image par S de la droite (IJ) par deux de ses points.
 - b) On désigne par E le point d'intersection de (C) et la droite (IJ) d'abscisse négative. Placer E et l'image E' de E par S. Justifier la position du point E'.

EXERCICE 2 (4,5 points)

On considère la suite numérique (u) définie par :

 $u_0 = \sqrt{2}$ et pour tout nombre entier naturel n, $u_{n+1} = 2 + \frac{1}{2}u_n$.

Le plan est muni d'un repère orthonormé (O, I, J). L'unité graphique est 2 cm.

- Déterminer les valeurs exactes de u₁ et u₂.
- 2- Soit f la fonction définie par : $f(x) = \frac{1}{2}x + 2$ et de représentation graphique (D).
 - a) Tracer (D) et la droite (Δ) d'équation y = x.
 - b) Placer u_0 sur l'axe (OI).
 - c) A l'aide de (D) et (Δ), placer les termes u_1 , u_2 et u_3 de la suite (u) sur l'axe (OI).
- 3- a) Démontrer par récurrence que pour tout entier naturel n, u_n ≤ 4.
 - b) Démonter que la suite (u) est croissante.
 - c) En déduire que la suite (u) est convergente.
- 4- On considère la suite (ν) définie par ν_n = u_n 4, pour tout nombre entier naturel n.
 Démontrer que la suite (ν) est une suite géométrique dont on précisera le premier terme et la raisc
- 5- On pose, pour tout nombre entier naturel n:

 $T_n = v_0 + v_1 + ... + v_n$ la somme des n + 1 premiers termes de la suite (v); $S_n = u_0 + u_1 + ... + u_n$ la somme des n + 1 premiers termes de la suite (u).

- a) Déterminer une expression de T_n en fonction de n.
- b) Justifier que: $S_n = 2(\sqrt{2} 4)(1 \frac{1}{2^{n+1}}) + 4(n+1)$.
- c) Déterminer la limite de S_n.

PROBLEME (11,5 points)

Le plan est muni d'un repère orthonormé (O, I, J). L'unité graphique est 2 cm. On considère la fonction f dérivable et définie sur $]-\infty$; $1[par: f(x) = x^2 - 1 + ln(1-x)$. On note (C) la courbe représentative de f.

- 1- a) Calculer $\lim_{x \to -\infty} f(x)$.
 - b) Calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$ puis donner une interprétation graphique du résultat.
 - Calculer la limite de f à gauche en 1 puis donner une interprétation graphique du résultat.

- 2- a) Pour tout nombre réel x de l'intervalle $]-\infty$; 1[, calculer f'(x).
 - b) Démontrer que f est strictement décroissante sur $]-\infty$; 1[.
 - c) Dresser le tableau de variation de f.
- 3- a) Démontrer que l'équation (E) : $x \in]-\infty$; 1[, f(x) = 0 admet une solution unique α .
 - b) Justifier que $-0.7 < \alpha < -0.6$.
- 4- a) Démontrer qu'une équation de la tangente (T) à (C) au point d'abscisse 0 est : y = -x 1.
 - b) On donne le tableau de valeurs suivant :

X	-2	-1,5	-1	-0,75	-0,5	-0,25	0,25	0,5	0,75
Arrondi d'ordre $1 de f(x)$	4,1	2,2	0,7	0,1	-0,3	-0,7	-1,2	-1,4	-1,8

Tracer (T) et (C).

On pourra faire la figure dans la partie du plan caractérisée par $\begin{cases} -3 \le x \le 5 \\ -4 \le y \le 6 \end{cases}$

- 5- On désigne par A l'aire de la partie du plan délimitée par (C), la droite (OI) et les droites d'équations respectives x = α et x = 0.
 - a) Calculer $\int_{\alpha}^{0} ln(1-x)dx$ à l'aide d'une intégration par parties.
 - b) Démontrer que la valeur de A en unités d'aire est : $A = \frac{\alpha^3}{3} 2\alpha (1 \alpha)ln(1 \alpha)$.
 - c) Déterminer en cm² l'arrondi d'ordre 2 de la valeur de A pour $\alpha = -0.65$.
- 6- Soit f⁻¹ la bijection réciproque de f et (C') la courbe représentative de f⁻¹ dans le plan muni du repère (O, I, J).
 - a) Calculer f(-1).
 - b) Démontrer que le nombre dérivé de f^{-1} en $\ln 2$ existe puis le calculer.
 - c) Construire la courbe (C') et sa tangente (Δ) au point d'abscisse ln 2 sur la figure de la question 4-b).