Corrigé

Problème1

1. Limite en $-\infty$ $\lim_{x \to -\infty} e^{2x} = 0$; $\lim_{x \to -\infty} e^{x} = 0$ Donc: $\lim_{x \to -\infty} f(x) = 16$

Donc la courbe admet une <u>asymptote horizontale</u> d'équation y = 16 en $-\infty$.

Docs à portée de main

- 2. a) On développe : $(e^x 2)(e^x 8) = e^{2x} 8e^x 2e^x + 16 = e^{2x} 10e^x + 16$
- 2. b) Limite en $+\infty$: $\lim_{x\to +\infty} e^x = +\infty$, donc $\lim_{x\to +\infty} \left(e^x 2\right) = +\infty$ et $\lim_{x\to +\infty} \left(e^x 8\right) = +\infty$ Donc: $\lim_{x\to -\infty} f(x) = +\infty$
- 3. a. Pour tout réel x, on a : $f'(x) = 2e^{2x} 10e^x = 2e^x(e^x 5)$.
- 3. b) Une exponentielle étant toujours strictement positive, on a : $f'(x) = 0 \Leftrightarrow e^x 5 = 0 \Leftrightarrow e^x = 5 \Leftrightarrow x = \ln 5$

De même : $f'(x) > 0 \Leftrightarrow e^x - 5 > 0 \Leftrightarrow e^x > 5 \Leftrightarrow x > \ln 5$

On obtient donc le tableau de signe suivant pour la dérivée et les variations de la fonction :

	$f(\ln 5) = e^{2\ln 5} - 10e^{\ln 5} + 16 = e^{\ln 25} - 10 \times 5 + 16$
	$f(\ln 5) = 25 - 50 + 16 = -9$

		ln 5		$+\infty$
	_	0	+	
	+		+	
	_	0	+	
16 _	<u> </u>	-9 -		+∞
	16 _	- + - 16		

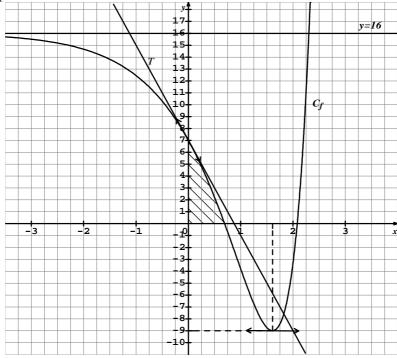
4. Tableau de valeurs :

х	-3	-2	-1	0	1	2	2,2				
f(x)	15,5	14,7	12,5	7	-3,8	-3,3	7,2				

5. a) Le coefficient directeur de la droite tangente au

point d'abscisse 0 est égal au nombre dérivé en 0, c'est-à-dire f'(0): $f'(0) = 2e^0(e^0 - 5) = 2(1 - 5) = -8$

5. b) et 5. c) Courbe représentative



6. a) $f(\ln 2) = e^{2\ln 2} - 10e^{\ln 2} + 16 = e^{\ln 4} - 10 \times 2 + 16 = 4 - 20 + 16 = 0$

Sur l'intervalle [0; ln 2] la courbe est au-dessus de l'axe des abscisses, donc $f(x) \ge 0$.

b) Calcul de l'intégrale de le fonction f sur l'intervalle [0; ln 2].

$$I = \int_0^{\ln 2} f(x) dx = \int_0^{\ln 2} (e^{2x} - 10e^x + 16) dx = \left[\frac{e^{2x}}{2} - 10e^x + 16x \right]_0^{\ln 2} = \left(\frac{e^{2\ln 2}}{2} - 10e^{\ln 2} + 16 \times \ln 2 \right) - \left(\frac{e^0}{2} - 10e^0 + 16 \times 0 \right)$$

$$I = \left(\frac{e^{\ln 4}}{2} - 10 \times 2 + 16 \ln 2\right) - \left(\frac{1}{2} - 10\right) = \left(2 - 20 + 16 \ln 2\right) - \left(-\frac{19}{2}\right) = -18 + 16 \ln 2 + 9, 5 = -8, 5 + 16 \ln 2.$$

La fonction f étant positive sur $[0; \ln 2]$, alors l'intégrale est égale à l'aire en unité d'aires ; l'unité d'aire est égale à $2 \times 0.5 = 1$ cm² donc : $(-8.5 + 16 \ln 2)$ cm² . 6. c) $(-8.5 + 16 \ln 2) \approx 2.59$ cm²