Problème 16

- a. La fonction g est définie sur $]0;+\infty[$ par $g(x)=2x\sqrt{x}-3\ln x+6$ En utilisant les variations de g, déterminer son signe suivant les valeurs de x.
- b. La fonction numérique f est définie sur $]0,+\infty[$ par $f(x)=\frac{3\ln x}{\sqrt{x}}+x-1$
- 1. Déterminer les limites de f en 0 et $+\infty$ (en $+\infty$, on pourra poser X = \sqrt{x}).
- 2. Utiliser la première partie pour déterminer le sens de variation de f.
- 3. a. Soit (Δ) la droite d'équation y = x 1 et C la représentation graphique de f dans un repère orthonormé du plan. Montrer que (Δ) est asymptote de C et étudier leurs positions relatives. Les construire.
- 4-a-Déterminer la dérivée de la fonction h définie sur $]0;+\infty[$ par $h(x)=6\sqrt{x}\ln x$ b- En déduire la primitive F de f sur $]0;+\infty[$ qui s'annule en 1.

Problème 17

Partie A

Soit f l'application définie sur $]0;+\infty[$ par $f(x)=x-4+\frac{\ln x}{4}$ et (C_f) sa courbe représentative.

1. Calculer les limites de f aux bornes de $]0;+\infty[$.

Justifier que (C_f) admet une asymptote et en donner une équation.

- **2**. a) Étudier les variations de f sur $]0;+\infty[$ et dresser son tableau de variations.
- b) En déduire que l'équation f(x) = 0 admet une solution unique α appartenant à [3;4] .
- c) Tracer (C_f) .
- 3. Soit D le domaine limité par $\left(C_f\right)$, l'axe des abscisses et les droites d'équations respectives $\mathbf{x} = \mathbf{\alpha}$ et $\mathbf{x} = \mathbf{4}$.
- a) Calculer, pour x > 0, la dérivée de $x \mapsto x \ln x$.
- b) En utilisant le résultat du a), exprimer l'aire en cm 2 du domaine D à l'aide d'un polynôme du second degré en x.

Partie B

Dans cette partie, I désigne l'intervalle[3;4].

- **1.** Soit *g* l'application définie sur $]0;+\infty[$ par $g(x)=4-\frac{\ln x}{4}$.
- a) Montrer que α est solution de l'équation : g(x) = x.
- b) Montrer que l'image de l'intervalle I par g est incluse dans I.
- c) Montrer que, pour tout élément x appartenant à $I:|g'(x)| \le \frac{1}{12}$
- **2.** Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = g(u_n)$
- a) En utilisant B)1. b), montrer par récurrence que : pour tout entier naturel n, u_n est élément de I.
- b) Prouver que, pour tout entier naturel $n: |u_{n+1} \alpha| \le \frac{1}{12} |u_n \alpha|$

En déduire par récurrence que, pour tout entier naturel $n: |u_n - \alpha| \le \frac{1}{12^n}$.

Quelle est la limite de la suite $(u_n)_{n \in \mathbb{N}}$?

c) Résoudre sur $]0;+\infty[$ l'inéquation : $\frac{1}{12^x} \le 10^{-3}$

En déduire que u_3 est une valeur approchée de α à 10^{-3} près.

Problème 18

Question de cours : soit I un intervalle de \square . Soient u et v deux fonctions continues, dérivables sur I telles que les fonctions dérivées u' et v' soient continues sur I.

Rappeler et démontrer la formule d'intégration par parties sur un intervalle [a;b] de I. Partie A

Soit f une fonction définie et dérivable sur l'intervalle [0;1]. On note f' la fonction dérivée de f. On suppose que f' est continue sur l'intervalle [0;1].

- 1. Utiliser la question de cours pour montrer que $\int_0^1 f(x) dx = f(1) \int_0^1 x f'(x) dx$.
- 2. En déduire que $\int_{0}^{1} [f(x)-f(1)] dx = -\int_{0}^{1} xf'(x) dx$.

Partie B

On désigne par In la fonction logarithme népérien.

Soit f la fonction définie sur l'intervalle]-2;2[par $f(x)=\ln\left(\frac{2+x}{2-x}\right)$ et C sa courbe représentative

dans un repère orthonormal $(0; \vec{i}, \vec{j})$ d'unité graphique 2 cm.

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- 2. a. Montrer que pour tout réel x de l'intervalle]-2;2[, on a $f'(x)=\frac{4}{4-x^2}$.
- b. En déduire les variations de f sur l'intervalle]-2;2[.

Partie C

Tracer La courbe C. Hachurer la partie P du plan constituée des points M(x; y) tels que : $0 \le x \le 1$ et $f(x) \le y \le \ln 3$.

En utilisant la partie A, calculer en cm2 l'aire de P.

Problème 19

Soit f la fonction définie pour tout nombre réel x de l'intervalle]0; 1] par : $f(x)=1+x\ln x$.

On note f' la fonction dérivée de la fonction f sur l'intervalle]0; 1].

C est la courbe représentative de la fonction f dans un repère orthonormal $(O\,;\vec{i},\vec{j})$.

T est la droite d'équation y = x.

La courbe C et la droite T sont représentées sur le schéma ci-dessous.

- 1. a. Justifier que $\lim_{x\to 0} f(x) = 1$.
- b. En utilisant le signe de $x \ln x$ sur]0 ; 1], montrer que, pour tout nombre réel $x \in$]0;1], on a $f(x) \le 1$.
- 2. a. Calculer f'(x) pour tout nombre réel $x \in]0;1]$.
- b. Vérifier que la droite T est tangente à la courbe C au point d'abscisse 1.
- 3. On note g la fonction définie pour tout nombre réel $x \in]0;1]$ par $g(x)=1+x\ln x-x$.
- a. Étudier les variations de g sur l'intervalle]0; 1] et dresser le tableau de variation de g. On ne cherchera pas la limite de g en 0.
- b. En déduire les positions relatives de la courbe C et de la droite T.

- 4. Soit α un nombre réel tel que $0 < \alpha < 1$. On pose $I(\alpha) = \int_{\alpha}^{1} [1 f(x)] dx$.
- a. À l'aide d'une intégration par parties, montrer que $I(\alpha) = \frac{\alpha^2}{2} \ln \alpha + \frac{1}{4} \frac{\alpha^2}{4}$.
- b. Déterminer $\lim_{\alpha \to 0} I(\alpha)$.
- c. Interpréter graphiquement le résultat précédent.
- d. À l'aide des résultats précédents, déterminer, en unités d'aire, l'aire du domaine compris entre la courbe C, la droite T et l'axe des ordonnées. Vous prendrez soin de tracer C

-Problème 20

On considère la fonction f définie sur $]0;+\infty[$ par : $f(x)=\left(\frac{x-1}{x}\right)\ln x$, et on désigne par sa courbe représentative dans le plan muni d'un repère $(0,\vec{i},\vec{j})$

- 1-Etude d'une fonction auxiliaire.
- 2-Etudier les variations de la fonction g définie sur $]0;+\infty[$ par : $g(x)=x-1+\ln x$
- b-vérifier que g(1) = 0
- c-En déduire le signe de g sur]0;+∞[
- 2-Etude de f
- a-Démontrer que : $f'(x) = \frac{g(x)}{x^2}$, $\forall x \in]0; +\infty[$
- b-Déduire de la question 1. le signe de f'(x) et les variations de f.
- c-Déterminer les limites de f en 0 et en +∞
- d-Etudier les variations de f
- 3-Représentations graphiques.
- a-Etudier suivant les valeurs de x la position relative de (C_f) par rapport a la courbe (Γ) d'équation $y = \ln x$
- b-Déterminer la limite en $+\infty$ de $f(x)-\ln x$. Interpréter graphiquement le résultat.
- c-Construire la courbe (Γ) , puis la courbe (C_f)