

SUJET 21

 z_1, z_2, z_3 sont trois nombres complexes tels que : $z_1 = 1 - \sqrt{3}i$, $|z_2| = 2$ et $\arg(z_2) = \frac{-\pi}{4}$

$$et z_3 = \frac{4i}{z_1}.$$

- 1. Mettre les nombres complexes z₂, z₃ sous la forme algébrique.
- 2. Déterminer le module et un argument de z_1 , et z_3 en déduire leur forme trigonométrique.
- 3. Placer dans le plan complexe muni du repère orthonormal $(O; \vec{u}; \vec{v})$ les points $A(z_1)$, $B(z_2)$, $C(z_3)$

SUJET 22

On considère les nombres complexes : $z_A = -\sqrt{3} + i$ $z_B = -1 - \sqrt{3}i$

- 1. Déterminer le module et un argument de z_A et de z_B .
- 2. Dans le plan complexe muni d'un repère $(O;\vec{u};\vec{v})$ placer les points A et B d'affixes respectives z_A et z_B .
- 3. Déterminer la nature du triangle OAB
- 4. Mettre le nombre complexe $z_A^2 \times z_B$ sous la forme algébrique.

SUJET 23

1. Déterminer la forme algébrique, module et argument et des nombres complexes suivant :

$$z_1 = \frac{4+i}{-2-3i}$$
; $z_2 = \frac{1+i}{1-i}$; $z_3 = \frac{3+5i}{i}$; $z_4 = \frac{1+i\sqrt{3}}{\sqrt{3}-i}$ et $z_5 = \frac{1+\sqrt{3}+(1-\sqrt{3})i}{1+i}$.

2. Ecrire z_1 ; z_2 ; z_3 ; z_4 et z_5 sous forme trigonométrique.

SUJET 24

Le plan est muni du repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 2 cm. Soit A, B et

C les points d'affixes respectives :
$$z_A = 3$$
 ; $z_B = \frac{5}{2} + \frac{7}{2}i$ et $z_C = -\frac{1}{2} - \frac{1}{2}i$

- 1. Placer les points A, B et C sur une figure
- 2. Quelle est la nature du triangle ABC?
- 3. Déterminer l'affixe du point I, milieu de [BC]
- 4. Déterminer l'affixe du point D tel que le quadrilatère ABDC soit un carré.

SUJET 25

Soit
$$z = 1 + i\sqrt{3}$$

- 1. Ecrire sous forme algébrique les complexes -z; z^2 ; $\frac{2}{z}$
- 2. Déterminer module et argument des complexes -z; z^2 ; $\frac{2}{z}$
- 3. Dans le plan muni du repère orthonormal $(O; \vec{u}; \vec{v})$ unité graphique : 2cm, on note

1

A; B; C; D les points d'affixes respectives
$$z$$
; $-z$; z^2 ; $\frac{2}{z}$

Montrer que les triangles ABC et BCD sont rectangles d'hypoténuse [BC]

SUJET 26

Le plan complexe est rapporté au repère orthonormal direct $(O; \vec{u}; \vec{v})$, d'unité graphique 2 cm.

Le nombre i désigne le nombre complexe de module 1 et d'argument $\pi/2$.

- 1. Soit trois nombres complexes $z_1 = \sqrt{3} + i$; $z_2 = \frac{z_1^2}{2}$ et $z_3 = \frac{4}{z_2}$
- (a) Écrire z_1 sous la frome trigonométrique.
- (b) Écrire sous la forme a+bi les complexes z_2 et z_3 .

SUJET 27

Le plan complexe est muni d'un repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 1 cm (ou 1 grand carreau).

- 1. On considère les deux nombres complexes z_A de module 4 et d'argument $\pi/3$ et $z_B=2-2i\sqrt{3}$.
 - (a) Déterminer la forme algébrique du nombre z_A .
 - (b) Déterminer la forme trigonométrique du nombre $z_{\rm B}$.
 - (c) Placer dans le plan les points A et B d'affixes respectives z_A et z_B .
- 2. On considère les deux nombres complexes $z_C = -4$ et $z_D = -1 + i\sqrt{3}$.
- (a) Calculer le module et un argument de chacun de ces deux nombres complexes.
 - (b) Placer dans le plan complexe les points C et D d'affixes respectives z_c et z_p .
- 3. Démontrer que les points A, B et C appartiennent à un même cercle de centre O.
- 4. Démontrer que le triangle BDA est rectangle.
- 5. Démontrer que le triangle ABC est équilatéral.

SUJET 28

Le plan est muni du repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 2 cm Soit A, B, C et D les points d'affixes respectives : $z_A = 5$; $z_B = -2 + 4i$; $z_C = -2 - i$ et $z_D = 3 + 4i$

- 1. Placer les points A, B, C et D sur une figure
- 2. Calculer l'affixe du vecteur CD
- 3. Déterminer l'affixe du point I, milieu de [CD]
- 4. Montrer que le quadrilatère OBAD est un parallélogramme
- 5. Quelle est la nature du triangle ABC ? justifier par un calcul

SUJET 29

Le plan est muni du repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 2 cm

Soit A, B et C les points d'affixes respectives : $z_A = 3$; $z_B = \frac{5}{2} - \frac{7}{2}i$ et $z_C = -\frac{1}{2} + \frac{1}{2}i$

- 1. Placer les points A, B et C sur une figure
- 2. Quelle est la nature du triangle ABC?
- 3. Déterminer l'affixe du point I, milieu de [BC]

4. Déterminer l'affixe du point D tel que le quadrilatère ABDC soit un carré.

SUJET 30

Le plan complexe est muni d'un repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 1 cm (ou 1 grand carreau).

- 1. On considère les deux nombres complexes $z_A = -2\sqrt{3} + 2i$ et z_B de module 4 et d'argument $\pi/6$.
 - (a) Déterminer la forme algébrique du nombre z_A .
 - (b) Déterminer la forme trigonométrique du nombre z_R .
 - (c) Placer dans le plan les points A et B d'affixes respectives $z_{\scriptscriptstyle A}$ et $z_{\scriptscriptstyle B}$.
- 2. On considère les deux nombres complexes $z_C = -4i$ et $z_D = \sqrt{3} i$.
- (a) Calculer le module et un argument de chacun de ces deux nombres complexes.
 - (b) Placer dans le plan complexe les points C et D d'affixes respectives z_c et z_p .
- 3. Démontrer que les points A, B et C appartiennent à un même cercle de centre O.
- 4. Démontrer que le triangle BDA est rectangle.
- 5. Démontrer que le triangle ABC est équilatéral.

SUJET 31

Dans le plan muni du repère orthonormal $(O; \vec{u}; \vec{v})$ unité graphique : 1cm, on note A ; B ; C les

points d'affixes respectives : $z_A = 1 + i$; $z_B = 3 - i$ et $z_C = 4 + 2i$

Déterminer la nature du triangle ABC (isocèle, équilatéral, rectangle, quelconque).

SUJET 32

On pose $z_A = \sqrt{3} + i$; $z_B = \sqrt{3} + i$; $z_C = 2\sqrt{3} + 2i$; $z_D = 2i$.

- 1. Déterminer module et argument de chacun de ces complexes.
- 2. Dans le plan complexe muni du repère orthonormal $(O; \vec{u}; \vec{v})$; placer les points A;B;C;D d'affixes respectives z_A ; z_B ; z_C ; z_D et montrer que les points O;B;C;D sont sur un même cercle de centre A ont on précisera le rayon.

SUJET 33

Le plan complexe est rapporté au repère orthonormal direct $(O; \vec{u}; \vec{v})$ (unité graphique 2cm).

On note i le nombre complexe de module 1 et d'argument $\pi/2$

On considère les nombres complexes $z_A = 1 + i\sqrt{3}$; $z_B = \sqrt{2} + i\sqrt{2}$ et $z_C = \frac{z_A^2}{z_B}$

a) Ecrire z_C sous forme algébrique. b) Ecrire z_A , z_B et z_C sous forme trigonométrique.

SUJET 34

1-Résoudre le système suivant d'inconnues complexes z et z': $\begin{cases} z+i\ z'=-1\\ z-z'=2+i \end{cases}$

On donnera les solutions sous forme algébrique.

- 2- Le plan complexe est rapporté au repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 3 cm
- a- Construire avec précision dans le repère $(O; \overrightarrow{u}; \overrightarrow{v})$ les points A , B et C d'affixes respectives

$$z_A = -1$$
 , $z_B = 2i$ et $z_C = -2 + i$

On laissera apparents les traits de construction.

b-Calculer les modules des nombres complexes : $z_B - z_C$ et $z_B - z_A$.

Donner une interprétation géométrique de ces résultats .

- c-On note M le milieu du segment [AC]. Déterminer l'affixe du point M, puis calculer la distance BM.
- d- Déterminer l'aire du triangle ABC.

SUJET 35

Le plan complexe est rapporté au repère orthonormal direct $(O; \vec{u}; \vec{v})$ d'unité graphique 1 cm.

Le nombre i désigne le nombre complexe de module 1 et d'argument $\pi/2$.

- 1. a. Déterminer sous forme algébrique le nombre complexe z_1 vérifiant : $z_1 (1 + i) + 3 + i = 0$.
 - b. Déterminer sous forme algébrique les nombres complexes $\boldsymbol{z_2}$ et $\boldsymbol{z_3}$ vérifiant le

système :
$$\begin{cases} 2z_2 + z_3 = 5 \\ z_2 + 3z_3 = -10i \end{cases}$$

- 2. Soit A, B et C trois points du plan d'affixes respectives $z_A = 3 + 2i$, $z_B = -1 4i$ et $z_C = -2 + i$.
 - a. Placer ces trois points dans le plan complexe.
 - b. Calculer les longueurs AB, BC et CA.
 - c. En déduire la nature du triangle ABC, puis calculer son aire.
- 3. Soient les nombres complexes : $z_1 = 2i$ et $z_2 = 1 + i\sqrt{3}$.
 - a. Calculer $z_1 \times \overline{z_2}$, $\frac{z_1}{z_2}$, $\frac{z_2^2}{2}$ et $\frac{4}{z_2}$. En déduire le module et l'argument de $z_1 \times \overline{z_2}$,

4

$$\frac{z_1}{z_2}$$
, $\frac{z_2^2}{2}$ et $\frac{4}{z_2}$.

b. Ecrire z_1 , z_2 et $\overline{z_2}$ sous forme trigonométrique.

SUJET 36

1/ Calculer les deux nombres complexes z_1 et z_2 vérifiant : $\begin{cases} 2z_1 + z_2 = 4 \\ 2iz_1 - z_2 = 0 \end{cases}$

On déterminera z_1 et z_2 sous forme algébrique.

$$2/ \text{ soit } z_1 = 1 - i \text{ et } z_2 = 2 + 2i$$
 .

- a. Déterminer le module et un argument de z_1 , z_2 et $z_1 \cdot z_2$.
- b. Ecrire sous forme algébrique z_1^2 et z_2^4 puis z_1^{1000} .

SUJET 37

Le plan complexe est muni du repère orthonormal $(O; \vec{u}; \vec{v})$:

On désigne par A;B;C les points d'affixes respectives $4+\frac{5}{2}i$; $4-\frac{5}{2}i$ et $2+\frac{3}{2}i$

- 1. Calculer les longueurs des côtés du triangle ABC. En déduire qu'il est rectangle.
- 2. E désigne l'ensemble des points M du plan dont l'affixe z vérifie $\left|z-4\right|=\frac{5}{2}$
 - (a) A;B;C sont-ils des points de E?
 - (b) En notant I le point d'affixe 4; déterminer la nature de E.

SUJET 38

Le plan complexe P est rapporté au repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 1 cm.

On note : i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$; z_1 le nombre complexe $z_1 = -1 - i\sqrt{3}$.

- 1. On pose $z_2 = i z_1$, montrer que $z_2 = \sqrt{3} i$
- 2.a. Calculer le module et un argument de chacun des nombres complexes z_1 et z_2 .
- 2.b. Placer dans le plan P le point M_1 d'affixe z_1 et le point M_2 d'affixe z_2 .
- 3. Soient A, B et C les points du plan d'affixes respectives z_A ; z_B et z_C telles que :

$$z_A = -2 + 2i\sqrt{3}$$
. $z_B = 2 - 2i\sqrt{3}$ et $z_C = 8$

- 3.a. Montrer que $z_A = 2\overline{z_1}$ et que $z_B = -z_A$
- 3.b. Placer les points A,B et C dans le plan P.
- 3.c. Démontrer que le triangle ABC est rectangle.
- 3.d. Calculer l'affixe du point D de sorte que le quadrilatère ABCD soit un rectangle. le plan est muni d'un repère orthonormal $(O; \vec{u}; \vec{v})$; l'unité graphique 1cm sur les axes.

SUJET 39

Le plan complexe est rapporté à un repère orthonormal $(O; \vec{u}; \vec{v})$ d'unité graphique 1 cm.

On considère les points A, B et C d'affixes respectives

$$z_A = \sqrt{3} + 3i$$
, $z_B = 2\sqrt{3}$, $z_C = 2i$

- 1. Placer les points A, B et C dans le plan complexe.
- 2. Calculer le module et un argument du nombre complexe z_A .
- 3. Calculer les modules des nombres complexes z_A-z_C , z_B-z_C et z_A-z_B .
- 4. Déterminer la nature du triangle ABC.

SUJET 40

On désigne par i le nombre complexe de module 1 et d'argument $\pi/2$.

On pose
$$z = 1 + i$$
, $z_2 = \sqrt{3} + i$ et $z_3 = z_1^3 z_2$.

1)a) Mettre z_1^3 sous forme algébrique (on pourra utiliser une identité remarquable).

5

b) Mettre z_3 sous forme algébrique.

- 2)a) Déterminer le module et un argument du nombre complexe $z_{\rm I}$, puis le module et un argument
 - du nombre complexe z_1^3 .
 - b) Déterminer le module et un argument du nombre complexe $\,z_2\,$.