

BACCALAUREAT SESSION 2021

Coefficient: 4

Durée: 3 h

PHYSIQUE-CHIMIE


SÉRIE : D

Cette épreuve comporte quatre (04) pages numérotées 1/4, 2/4, 3/4, 4/4. La candidate ou le candidat recevra une (01) feuille de papier millimétré. Toute calculatrice est autorisée.

EXERCICE 1

CHIMIE (3 points)

A. La courbe de dosage d'un volume $V_A = 20 \ mL$ d'une solution d'acide carboxylique par une solution d'hydroxyde de sodium de concentration $C_B = 0.02 \ mol. \ L^{-1}$ est représentée ci-dessous.

Proposition 1. Le pK_a du couple acide base est :

a)
$$pK_a = 8$$
;

b)
$$pK_a = 7$$
;

c)
$$pK_a = 3.8$$
;
d) $pK_a = 4.2$;

d)
$$pK_a = 4.2$$

Proposition 2. La concentration de la solution d'acide carboxylique est:

a)
$$C_A = 0.02 \, mol. \, L^{-1}$$
;

b)
$$C_A = 0.01 \ mol. \ L^{-1}$$

b)
$$C_A = 0.01 \, mol. \, L^{-1}$$
;
c) $C_A = 0.1 \, mol. \, L^{-1}$;
d) $C_A = 1 \, mol. \, L^{-1}$;

d)
$$C_4 = 1 \text{ mol. } L^{-1}$$
:

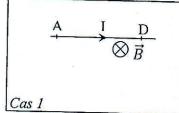
Recopie le numéro de la proposition suivi de la lettre correspondant à la bonne réponse dans chaque cas.

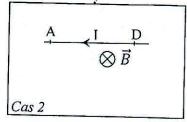
В.

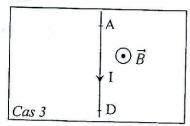
- 1. Écris l'équation-bilan de la réaction entre l'acide chlorhydrique (H₃O⁺, Cl⁻) et l'hydroxyde de sodium (Na^+, OH^-) .
- 2. Donne les caractéristiques de cette réaction.
- 3. Choisis, parmi les indicateurs colorés ci-dessous, celui qui convient le mieux pour repérer le pH du point d'équivalence lors du dosage de l'acide chlorhydrique par l'hydroxyde de sodium.

Indicateurs colorés	Zone de virage du pH
Bleu de thymol	1,5 – 2,5
Hélianthine	3,1 – 4,4
Bleu de Bromothymol	6,0-7,6
Phénolphtaléine	8,2-10,0

C. Pour chacune des propositions suivantes :


- 1. L'équation-bilan de la réaction entre l'acide éthanoïque et l'hydroxyde de sodium est : $CH_3COOH + Na^+ + OH^- \rightarrow CH_3COO^- + Na^+ + H_2O;$
- 2. Le pH à l'équivalence lors du dosage de l'acide éthanoïque par l'hydroxyde de sodium est égal à 7;
- 3. Le pH à la demi-équivalence lors du dosage de l'acide éthanoïque par l'hydroxyde de sodium est $pH = \frac{1}{2}pK_a \; ;$
- 4. La courbe $pH = f(V_B)$ lors du dosage de l'acide éthanoïque par l'hydroxyde de sodium présente quatre parties.


Écris le numéro de la proposition suivi de la lettre V si la proposition est vraie et F si elle est fausse.


A.

1. Nomme la force \vec{F} qui s'exerce sur un fil conducteur parcouru par un courant d'intensité I et plongé dans un champ magnétique uniforme \vec{B} .

2. Reproduis les schémas ci-dessous et représente la force \vec{F} dans chaque cas.

B.

1. Reproduis le schéma ci-dessous et représente le vecteur champ magnétique \vec{B} au centre du solénoïde parcouru par un courant d'intensité I.

2. Indique sur le même schéma les faces nord (N) et sud (S) du solénoïde.

EXERCICE 2 (5 points)

En vue de vous faire exploiter des réactions d'estérification, ton professeur de Physique-Chimie met à la disposition de ton groupe :

un chlorure d'acyle de formule semi-développée : C_nH_{2n+1}

du méthanol;

du décaoxyde de tétraphosphore (P₄O₁₀).

En outre, il vous donne les informations suivantes :

1,57 g de ce chlorure d'acyle contiennent 0,02 mol;

la réaction de ce chlorure d'acyle sur le méthanol donne un composé organique A et du chlorure d'hydrogène;

la réaction de A sur l'eau donne deux composés organiques. L'un de ces composés peut réagir en présence du décaoxyde de tétraphosphore (P₄O₁₀) pour donner un composé B et de l'eau.

Masses molaires en g.mol⁻¹: M(H) = 1; M(C) = 12; M(Cl) = 35,5.

Volume molaire: $V_m = 24 \text{ L.mol}^{-1}$.

En tant que rapporteur, propose la solution du groupe en répondant aux consignes ci-dessous.

1. Identification du chlorure d'acyle

1.1 Montre que la masse molaire du chlorure d'acyle est M = 78,5 g.mol⁻¹.

1.2 Déduis-en sa formule semi-développée et son nom.

2. Action du chlorure d'acyle sur le méthanol

2.1 Écris l'équation-bilan de la réaction et donne ses caractéristiques.

2.2 Nomme le composé A obtenu.

2.3 Détermine:

2.3.1 la masse du composé A obtenu;

2.3.2 le volume du chlorure d'hydrogène dégagé.

3. Action du composé A sur l'eau

- 3.1 Écris l'équation-bilan de la réaction.
- 3.2 Donne le nom de cette réaction et ses caractéristiques.
- 3.3 Écris l'équation-bilan de la réaction d'obtention du composé B.
- 3.4 Nomme le composé B.
- 4. Écris l'équation-bilan de la réaction permettant d'obtenir le composé A à partir de B.

EXERCICE 3 (5 points)

Ton Professeur de Physique-Chimie te propose d'étudier le dispositif ci-dessous en vue d'évaluer les notions vues en classe sur la mécanique.

Ce dispositif est constitué d'un tronçon rectiligne AB incliné d'un angle α par rapport à l'horizontale et d'un tronçon horizontal BO. Les points A, B et O sont dans le même plan vertical.

Une bille, supposée ponctuelle de masse m, est lâchée en A sans vitesse initiale. Elle parcourt le trajet ABO et arrive en O avec une vitesse \vec{v}_o horizontale. La bille quitte le point O à la date t=0 s, tombe dans le vide sous l'action de son poids et atterrit au sol au point S. L'altitude du point O par rapport au sol est h (voir figure).

Données:

AB = L = 2,5 m; α = 30°; h = 0,5 m; v_o = 5 m.s⁻¹; g = 10 m.s⁻². Les frottements sont négligeables.

1. Étude du mouvement de la bille sur le tronçon AB.

- 1.1 Fais le bilan des forces extérieures qui s'exercent sur la bille.
- 1.2 Représente ces forces sur un schéma.
- 1.3 Détermine:
 - 1.3.1 la vitesse v_B de la bille au point B;
 - 1.3.2 l'accélération a₁ de la bille sur le tronçon AB.
- 1.4 Déduis de ce qui précède la nature du mouvement de la bille.

2. Étude du mouvement de la bille sur le tronçon BO.

- 2.1 Détermine l'accélération a2 de la bille sur le tronçon BO.
- 2.2 Déduis-en la nature du mouvement de la bille sur ce tronçon.

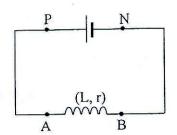
3. Étude du mouvement de la bille dans le repère (O, i, j)

- 3.1 Établis:
 - 3.1.1 les équations horaires x(t) et y(t) de la bille ;
 - 3.1.2 l'équation cartésienne y(x) de la trajectoire de la bille.

3.2 Détermine les coordonnées ys et xs du point de chute S de la bille.

EXERCICE 4 (5 points)

Au cours d'une séance de Travaux Pratiques (TP), ton professeur met à la disposition de ton groupe un générateur basses fréquences (GBF), une bobine d'inductance L et de résistance interne r, un condensateur de capacité C, un conducteur ohmique de résistance R, un ampèremètre, un voltmètre, un générateur de tension continue et des fils de connexion.


Il vous demande de déterminer les valeurs L, R, r et C.

A cet effet, sous sa supervision, ton groupe réalise deux expériences.

Expérience 1

Ton groupe applique une tension continue de valeur $U_1 = 6 \text{ V}$ aux bornes de la bobine.

Il mesure alors à l'aide d'un ampèremètre un courant d'intensité $I_1 = 0,3$ A.

Expérience 2

Ton groupe réalise un circuit électrique comportant en série le conducteur ohmique, la bobine, le condensateur et le générateur de basses fréquences (GBF). Il place dans le circuit un ampèremètre et un voltmètre. Il règle la valeur efficace de la tension délivrée par le GBF à U = 1 V.

Ton groupe mesure, pour différentes valeurs de la fréquence du GBF, l'intensité efficace I du courant. Le tableau ci-dessous donne les résultats obtenus.

N(Hz) 100 200 300 400 460 480 500 520 560 600 700	NI/II-	100	200	300	400	460	480	500	520	560	600	700	800
I(mA) 0,7 1,6 3,1 6,1 8,1 8,3 8,1 7,7 6,5 5,5 5,6			1.6			8 1	0.0	8.1	77	6.5	5.5	3,8	2,9

Tu es chargé de faire le rapport du groupe.

1. Étude de l'expérience 1

- 1.1 Écris l'expression de la tension U_L aux bornes de la bobine.
- 1.2 Calcule la résistance r de la bobine.

2. Étude de l'expérience 2

- 2.1 Schématise le montage qui a permis d'obtenir les résultats de l'expérience.
- 2.2 Trace la courbe qui représente l'intensité efficace I en fonction de la fréquence N.

 $\acute{E}chelles: \begin{cases} 1 \text{ cm pour 1 mA;} \\ 1 \text{ cm pour 100 Hz.} \end{cases}$

2.3 Déduis de la courbe :

- 2.3.1 la fréquence de résonance d'intensité No;
- 2.3.2 la bande passante ΔN ;
- 2.3.3 le facteur de qualité Q.

2.4 Détermine:

- 2.4.1 la tension U_C aux bornes du condensateur à la résonance ;
- 2.4.2 la valeur C de la capacité du condensateur ;
- 2.4.3 la valeur L de l'inductance de la bobine;
- 2.4.4 la valeur R de la résistance du conducteur ohmique.

MINISTERE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE CÔTE D'IVOIRE Union – Discipline – Travail

DIRECTION DES EXAMENS ET CONCOURS

SOUS-DIRECTION DES EXAMENS ET CONCOURS SCOLAIRES

SERVICE BACCALAUREAT

BACCALAUREAT - SESSION 2021

EPREUVE: PHY SIQUE - CHIMIE DATE: 08/	07/2021 HEURE:	8H-M1
CORRIGE ET BAREME	•	D
CORRIGE	BARE	ME
EXERCICE 1		
CHIMTE (3 points	1	
1 d	**	
2. 4 6	**	
В.		
1. (H30+, cl-) + (Na+, OH-) -> 2 H20+1	(++cl-)	
- ou	# > *	
$H_30^+ + OH^- \longrightarrow 2H_2O$		
2. La réaction est exothermique et to	tale **	
2. La réaction est exothermique et to 3. Le blou de bromothythul.	*	
C.	-	
Λ. V		
₽, F	*	
3. F	*	
4 - V	*	
PHYSTQUE (2 paints)		
PHYSIQUE (2 points) - A. Partie Supprimes.		
B. 1) et 2) 11		
BOTTITI	**************************************	w P
一	***	1
N V 1 1 1 1 1 5	NO TO THE PURE	n raticel

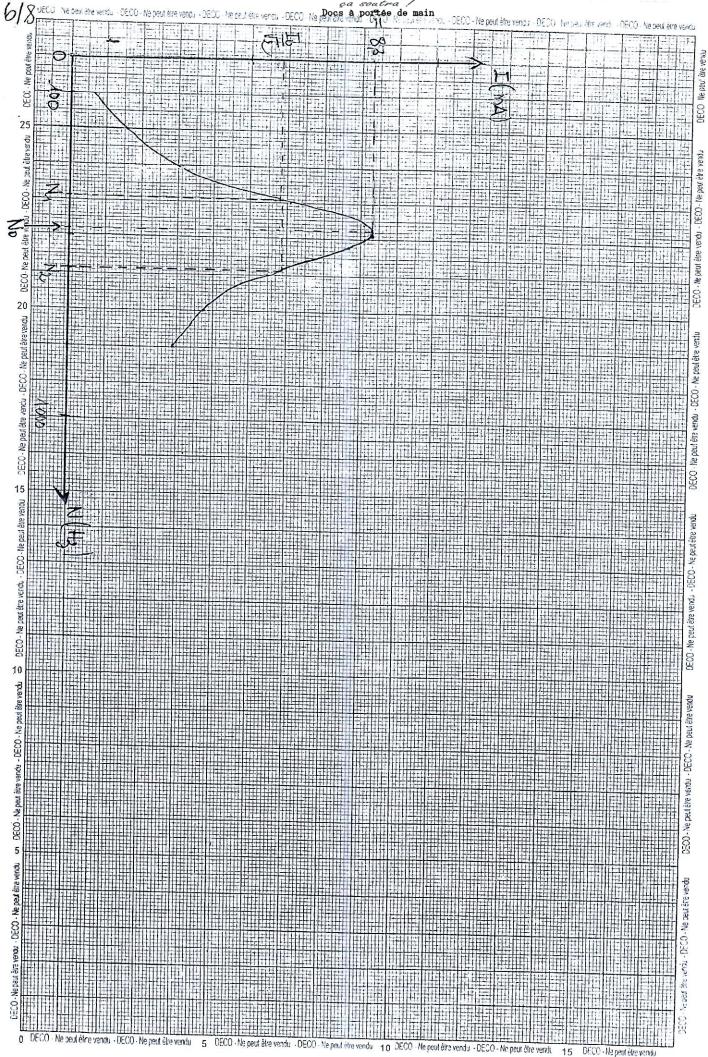
EPREUVE: PHYSIQUE - CHIMIE DATE: 08/07/2021 HEURE:	SERIE(S):
CORRIGE	
EXERCICE & (5 points)	BAREME
1. (Jee 1 1 1 2)	
11 Marie modain du chlore	
n - na	
1.1 Masse molaire du Chlorure d'acyle, n = na => M = m M = n	
, 6 m M 15 I	
A.N. $M = 1,57$ $M = 78,59$ $mol-1$	+> *
1-2. Formule semi-développée et nom	
Cntlen+1- C-cl; M=141+64,5	
N = M - 64,5 A.N. $n = 78,5 - 64,5$	
14	
n=1; Formule recherchée:	*
	N. A.
CH3 = C = cl: chlorure d'éthanoyte	
<u></u>	
2.1 equation - bilan de la réaction	
011 0 0	
$CH_3 - C - cl + cH_3 - OH \longrightarrow CH_2 - c' + Hcl$	→**
0_cH2	~
Caractéristiques de la reaction.	
la réaction lest vapide, totale et exother.	<u>→</u> *
mique.	
2.2. Nom du compose A obtenu	
Ethanoate de méthyle	
2.3.	≥
2.3.1 Masse du composé A	
my = n, my avec n = 0,02 moles	4
$m_{p} = 74.9. nool-1$	
MA = 0,02 x74; M=1,489 /-	→ **
/	

Fomesoutra.com

EPREUVE: PHYSIQUE - CHITTEDATE: HEURE:	SEDIE/C)
CORRIGE	SERIE(S):
	BAREME
2.3.2 Volume de Hel dégagé	
V= n or nyce = 0,02 mol	
Acl M Hel Dy 02 Mar	
1 At 1 - 009 - 000 At	
A.N. V = 0,02 x 24; V = 0,48L =	→ *
	,
3.1. Equation-bilar de la réaction sur l'eau.	
1	/
$CH_3 - C $	→ **
о 0,73	
3.2. Nom et caractéristiques de la réaction: * hydrolyse d'un lester;	
* hydroluse dlun lestor.	
* Hearting lout livit 1	→ *
* Heaction leute limitele et athermique.	<u>→</u> *
3.3. Equation-bilan de la réaction d'obtention de B	
P.A. CH2 C10	
2.5. Cyliation - orlan de la réaction d'obtention de la la certion d'obtention de la certion de la certion d'obtention de la certion d'obtention de la certion de l	V
OH 011 0 + 1120	→ **
\mathcal{I}_{2}	
<u>B</u>	300000000000000000000000000000000000000
3.4. Nom du combose B.	
Best l'anhydride ethanoique	<u> </u>
4 Equation-bilan d'obtention de A a	
partir de B	
1201 111 600	
Q	
CH2 - C"	***************************************
$CH = CH_3 - OH \longrightarrow CH_3 - C + O - CH_3$	4. 4
CH C	
CH3-C 70 CH3-C 70H	
CH_2-C_2	
OH	

EPREUVE: PHYSIQUE - CHITIE DATE: D8 072021 HEURE:	.SERIE(S):
CORRIGE	BAREME
Exercice 3	DARGINE
1. Etude du mouvement sur le tronçon AB	
1.1. Bilan des forces extériures	
Pi le los 12 de la bella	\
P': Le porids de la brille Ru: La réaction normale du trongon	
Jones Jones	,
12. Remere to time 179	
12. Keprésentation des forces extriniums	
Rin	
	**
A (B	
4 5	
1-3	
1.3.1 Détermination de la vitence VR en B	1
- Sapherue: La bille	
- Référente l terrestre supposé galileen	
Appliquons le théorème de l'Energe Cinétique	i
2 m V 2 1 m V 2 c W F + WP,	\ * *
Va= D et Ru L AB donc Word 20	
With z mgl nàd	
V	
- 1 mvez mgland -> vez V 2gland	J
A.N. VB = 12x10x25min 30	***************************************
$\frac{V_{g} z Sm/s}{}$	4
	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1.3.2 Ditermination de l'acceleration and bhille	
Systemics! (a bille	
Référente l'Errette suposé galiliés	




EFREUVE: F. W. J. C. ROT - C. C. T. M. E. DATE: 0.5 [D. F. Lo Y HEURE:	SERIE(S):
CORRIGE	BAREME
Projection om 1 bixe (A, B)  may z mg on d.	BAREIVIE -X
A.W. 9,2 5m/s ² 1.4. Nature du mouvement de la bille Le quoduit a, v >0 donc	) acapha
2. Etude du monvement Au Cotorson BD	The breetition
LA Détermination de l'accileration Que Systeine: la boille Référentiel terres te sufforé galilées Bilan des forces extérieures P: Porita de la bille Rn: Réaction normale du tourgon. Appliquons le théorime au Centre d'inertie.	N.B. Acceptu toute auto réponse
Projection Am l'axe (BO); ma, ZO  22 0 >	*
Car 9, 20 et V z Constante.  3. Etude du monvement dans (refie (0,02))  3.1.	

REUVE: 25H.7.11GOE - CH.N.P. DATE: DS (O) 16U HEURE:	SERIE(S):
CORRIGE	BAREME
3.1.1. Etablinement de xCt) et y(t)	
Type receipt to 100	
leferentiel terresty support galilein	· i
tolan dis fras : Por Le hords Le la bille	*
Telui (O. C. 1).	
Applianos le thus reine du Centre d'inistie	
a z ac	-
Projection on les axes (0,2) et (0,2)	
	<del>*</del>
a V 72 Vo DA REVOT	*
a pazo juzvo pri nzvot t j z+g t jz+gt yz1gt	
	->X-
3.1.2. Frablissemmb de l'épuation y (n)	
· · · · · · · · · · · · · · · · · · ·	
$nzV_{ot} \rightarrow +z\frac{y}{V_{o}} \rightarrow y_{o}(n)z\frac{1}{z}\frac{1}{2}\frac{n^{2}}{V_{o}z}$	*
V Voi	
3.2. Détermination des coordonnées de S	
S(24) (25)	
D	
75 = h z 0,5m, 7,2 19, 21	<del></del>
1 Voz	
25/5/27	X
J.N. 21, 21, 58 m	<b>⇒</b> <u>X</u>
S (25 21,58m; y, = 0,5m)	
*	

# Fomesoutra.com

Docs à portée de main

EPREUVE: PHY SIQUE - CHIMIE DATE: 08/07/2021 HEURE:	SERIE(S):
CORRIGE	BAREME
EXERCICE 4 (5 points)	
1-1. Loi d'ohm aux bornes de le bobine UL=U,=Il T1	*
1-2- Valeur de 72 D - U2 I1	
I ₁ AN D-6 D-00	
$\frac{A.N. \pi - 6}{0.3}  \pi = 20.n - \frac{1}{2}$	<del>*</del>
2.1 3 chéma du montage	
	MB: Ampliemetre et voltmetre présents et bien montes.
C (L)) R	Simm posde froint
2.2 Combe T = f (N) Voir papier millimètre	
2.3	<del></del>
No = 480 Hz	<del>\ \ \ \ \</del>
2-3.2 La bande passante	
for T = To tome V2	
$N_1 = 390 \text{ Hz et } N_2 = 590 \text{ Hz}$	→**
$\Delta N = N_1 - N_1 = 200 \text{ Hz}$	
180 15 ZN & 2 ZO H2	





CORRIGE	BAREME
2.3.7 Frata. 10 - 04 \ D	DARCIVIE
a la qualité el	
2.3.3 Facteur de qualité Q Q = No DN	$\rightarrow \star$
AN : $Q = 480$ $Q = 2,4$	$\rightarrow \star$
2.4 218 < 0 < 266	
2-41 Tension Ue Ue=QU	
02200	$\rightarrow \neg \land$
AN: Ue=2,4x1 Ue=2,4x1	$\rightarrow \star$
	W/ < 2.
2.4-7- Valeur de C	
A la résonance, U- To _ To	
CWO RTING	
dou C = Io 2TNpUe	$\rightarrow$ *
AN: C = 813 x 15-3 C=11 ME -	<del>→</del> *
2Tx 480 x 2, 4	
2-le 3 Valeur de 1	
A la résonance, on a 1 Cus²-s	
	<b>→</b> *
472No2	
AN L= 1 L=0,1H	<b>&gt;&gt;</b> X
AN L= 1 4π ² 480 ² ×1/1 x10 ⁶	
2-4-4 Valeur de R	
A la résonance U=ZXIa	
avec 7= R+D	
$\frac{d'ou}{d'ou} R + II = \frac{U}{I_0}$	
10	
12 — U — 77	
$R = \frac{U}{T_0} - \Lambda$	7 7
AN $R = \frac{1}{8.3 \times 6^{-3}} - 20$ $R = 100,5$ $\Omega$	