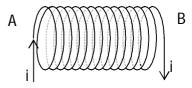


DEVOIR D'ÉLECTRICITÉ


Durée : 2 Heures / niveau : Tle D Enseignant: M. Essoh Lathe

Lundi 18/05/09

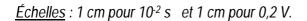
Cette épreuve comporte 2 pages numérotées 1/2 et 2/2.

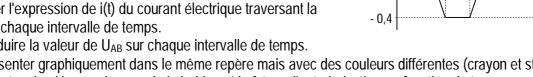
Exercice 1 (5 points)

On rappelle : $\mu_0 = 4\pi . 10^{-7}$ S.I., la résistance du solénoïde est négligeable et un solénoïde set une longue bobine. Soit un solénoïde (AB) de longueur I = 2 m, comportant 1000 spires, de rayon r = 5 cm. Le sens de l'orientation pour l'intensité i est choisi de A vers B dans le solénoïde (voir schéma ci-contre).

Partie A

Le solénoïde est parcouru par un courant électrique d'intensité i = 2 A.

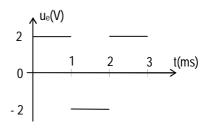

- 1. Le solénoïde est-il le siège d'une f.é.m. d'auto-induction ? Justifier votre réponse.
- Donner les caractéristiques du vecteur champ magnétique créé dans la région centrale du solénoïde par le passage du courant, puis le représenter.
- 3. Donner l'expression de l'inductance L du solénoïde puis en déduire sa valeur.
- 4. Calculer l'énergie stockée dans le solénoïde.



Partie B

Le solénoïde est à présent parcouru par un courant dont l'intensité i(t) varie avec le temps comme l'indique la figure ci-contre. On prendra l'inductance L = 5 mH.

- Pour quel(s) intervalle(s) de temps y a-t-il phénomène d'autoinduction?
- Donner l'expression de i(t) du courant électrique traversant la bobine sur chaque intervalle de temps.
- 3. En déduire la valeur de U_{AB} sur chaque intervalle de temps.
- Représenter graphiquement dans le même repère mais avec des couleurs différentes (crayon et stylo bleu) la tension U_{AB} aux bornes de la bobine et la f.é.m. d'auto-induction en fonction du temps.



Exercice 2 (5 points)

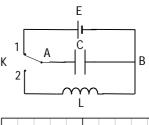
On applique à un montage intégrateur une tension d'entrée ue, carrée, représentée ci-dessous.

- 1. Quelles sont l'amplitude et la période de u_e ?
- On obtient à la sortie, une tension triangulaire u_s.
 - a) Faire le schéma du montage.
 - b) Établir l'expression de u_e en fonction de R, C et $\frac{du_s}{dt}$.

 2.10^{-2}

- c) En déduire l'expression de u_s pendant la première demi-période, sachant qu'à t = 0, $u_s = 0$.
- 3. Pour quelle valeur de t, u_s prend-elle pour la première fois sa valeur minimale?
- 4. Calculer la valeur de la capacité C du condensateur pour que cette valeur minimale soit -10V.

On prendra : $R = 4 K\Omega$..


Exercice 3 (5 points)

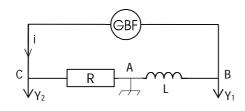

On considère l'expérience schématisée ci-contre où l'oscillogramme affiche la tension u_{AB} aux bornes du condensateur en circuit LC.

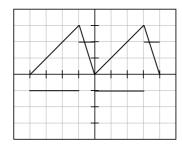
On donne : $C = 0.8 \mu F$.

- 1. Quelle est la charge maximale du condensateur?
- 2. Quelle est l'énergie maximale emmagasinée dans le condensateur ?
- 3. Établir une relation entre la charge q du condensateur, q , L et C.
- 4. Quelle est la valeur de l'inductance L de la bobine?
- 5. Déterminer l'intensité i(t) du courant électrique dans le circuit LC.

<u>Échelles</u>: 1 div. pour 2 V et 1 div. pour 500 μ s.

Exercice 4 (5 points)


Soit le montage ci-dessous :


GBF est un générateur Basse Fréquence, le dipôle CA est un conducteur ohmique de résistance $R = 100 \,\Omega$. Le dipôle AB est une bobine d'auto-inductance L et de résistance interne négligeable. Les oscillogrammes obtenus sont représentés sur la figure ci-dessous.

<u>Données</u>: Durée du balayage horizontale : 1 ms/div

Sensibilité verticale :

voie 1 : 20 mV/div et voie 2 : 1 V/div à t = 0, le spot est à gauche de l'écran.

- 1. Préciser les tensions visualisées sur les voies Y_1 et Y_2 .
- 2. Sachant que la tension délivrée par le GBF est en dents de scie, quelle est la nature de l'oscillogramme visualisé sur chaque voie Y₁ et Y₂?
- 3. Le circuit étant parcouru par un courant d'intensité i, donner l'expression de i en fonction de u_{CA} et R.
- 4. Exprimer u_{BA} en fonction de R, L et $\frac{du_{CA}}{dt}$.
- 5. Calculer l'inductance L de la bobine.