DEVOIR DE MATHEMATIQUES

ANNEE ACADEMIQUE 202 3 - 2024

Cette épreuve comporte 2 pages numérotées 1/2 et 2/2. Chaque exercice est indépendant. L'usage de la calculatrice scientifique est autorisé CE: MATHS Coefficient: 4 Niveau: Tle G Durée: 03 H

EXERCICE 1

Cet exercice est un questionnaire à choix multiple (QCM). Écris sur la copie le numéro de l'énoncé suivi de la lettre de la bonne réponse. Exemple : 7-A.

N°	Propositions	A	B	C	
1	$\lim_{x \to -\infty} \frac{x^2 - 5x + 4}{x^3 + 7x - 1} \text{ est éagale à} :$	$-\infty$	+∞	0	
2	$\lim_{x \to -\infty} -8x^3 + 4x^2 - 6x + 1 =$	-∞	+∞	0	
3	La dérivée de $5x^2 - 3x + 1$ est :	$10x^2 - 3x$	10x - 3x	10x - 3	
4	$\lim_{x \to -4_{>}} \frac{1}{x+4} \text{ est egale } \dot{a} :$		+∞	0	
5	u et v sont deux fonctions, on a : $\left(\frac{u}{v}\right)' =$	$\frac{u'v+v'u}{v^2}$	$\frac{u'v-v'u}{v^2}$	$\frac{u'v-v'u}{u^2}$	
6	f est une fonction et f' sa dérivée. Si $f'(x) < 0$ sur l , alors f est :	constante sur I	croissante sur I	décroissante sur I	
7	u et v sont deux fonctions, on a : $(u + v)' =$	u'v + v'u	u' + v'	u'v-v'u	

EXERCICE 2

Réponds par **Vrai** ou **Faux** à chacune des affirmations suivantes en écrivant le numéro de l'affirmation suivi de la lettre V si l'affirmation est Vraie ou de la lettre F si l'affirmation est Fausse. Exemple :7-V.

N°	Propositions				
1	$\lim_{x \to -\infty} \frac{7x^2 - 10x + 6}{x - 2} = +\infty$				
2	La limite à l'infini d'une fonction polynôme est égale à la limite à l'infini de son monôme le plus haut degré.				
3	Soit la fonction g telle que $g(x) = x^3 - 3x^2 + x - 27$. On a : $g'(x) = 3x^2 - 6x + 1$.				
4	P est un polynôme et α un nombre réel. $P(0) = \alpha$ signifie que α est une racine de P.				
5	Si $f(x) = \frac{3x^2 + 6x - 1}{x - 2}$, alors $Df = \mathbb{R} \setminus \{-2\}$.				
6	$\lim_{x \to -\infty} 7x^2 - 11x - 4 = -\infty$				
7	$\lim_{x \to -\infty} \frac{1}{x^2 - 6} = 0$				

IFDEC-INTERNATIONAL PLATEAU

EXERCICE 3

On considère le polynôme P tel que $P(x) = x^3 - 4x^2 - 7x + 10$ où x désigne un nombre réel.

- 1. a. Résous dans \mathbb{R} l'équation (E) : $x^2 + x 2 = 0$.
 - b. Déduis-en la résolution dans \mathbb{R} de l'inéquation (I) : $x^2 + x 2 = 0 > 0$.
- 2. a. Calcule P(5) et tire une conclusion.
 - b. Ecris P sous la forme $P(x)=(x-5)(ax^2+bx+c)$ où a, b et c sont des nombres réels non nuls.
- 3. a. Déduis-en la solution de l'équation P(x)=0.
 - b. Etudie le signe de P sur R.
 - c. Déduis-en dans \mathbb{R} la résolution de l'inéquation $P(x) \leq 0$.

EXERCICE 4

On donne la fonction f definie de \mathbb{R} vers \mathbb{R} par $f(x) = \frac{x^2 - 7x + 10}{x - 1}$ et (cf) sa courbe représentative dans le repère orthonormé (O, I, J).

PARTIE A

Soit le polynôme Q tel que $Q(x) = x^2 - 2x - 3$.

1) Résous dans \mathbb{R} , l'équation Q(x) = 0.

2) Justifie que
$$\begin{cases} \forall x \in] - \infty; -1[\cup]3; +\infty[; Q(x) > 0] \\ \forall x \in] -1; 3[; Q(x) < 0]. \end{cases}$$

PARTIE B

- 1. Détermine l'ensemble de définition de f.
- 2. Calcule $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 3. Calcule $\lim_{\substack{x \to 1 \\ <}} f(x)$ et $\lim_{\substack{x \to 1 \\ >}} f(x)$ et interprète géométriquement ces résultats.
- 4. a. Démontre que $\forall x \in Df$, la dérivée $f'(x) = \frac{Q(x)}{(x-1)^2}$
 - b. Déduis-en le sens de variation de f sur Df.
 - c. Dresse le tableau de variation de f.

EXERCICE 5

Années	2010	2011	2012	2013	2014	2015
Taux de réussite des examens blancs régionaux X ₁ en pourcentage	30	40	50	40	25	60
Taux de réussite au Baccalauréat national Y, en pourcentage	29	32	36	30	28	40

- 1. Représenter le nuage de points associé à cette série statistique double dans un repère orthogonal (0, l, J) d'unité graphique : 1Cm pour 5unités.
- 2. Calculer les coordonnées du moyen G.
- 3. a) Calculer la variance de X et la variance de Y.
 - b) Calculer la covariance entre X et Y.
- 4. a) Calculer le coefficient de corrélation linéaire r entre les variables X et Y.
 - b) Le résultat trouvé justifie un bon ajustement ?
- 5. Déterminer une équation de la droite de régression de X en Y par la méthode des moindres carrés.
- 6. On suppose qu'une équation de la droite de régression de Y en X par la méthode des moindres carrés est : y = 0.3x + 20.

A quel taux de réussite peut-on s'attendre en 2020 si 42 élèves sur 100 sont admis à l'examen régional au plan national, en supposant que la tendance reste inchangée.