

MATHS BEPC 2011 ZONE 1

EXERCICE 1

On donne le nombre réel suivant : $\sqrt{7} - 2\sqrt{2}$

1. Justifie que $\sqrt{7} - 2\sqrt{2}$ est négatif

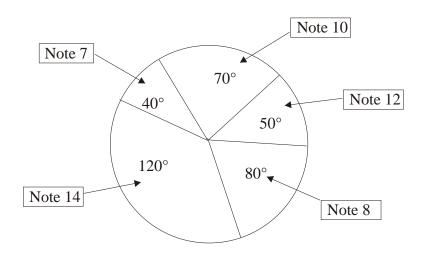
2. On donne 1,414 $< \sqrt{2} <$ 1,415 et 2,645 $< \sqrt{7} <$ 2,646

a) Donne un encadrement du nombre $2\sqrt{2} - \sqrt{7}$ par deux décimaux consécutifs d'ordre 1.

b) Déduis-en un encadrement de $\sqrt{7} - 2\sqrt{2}$

EXERCICE 2

Dans le plan muni d'un repère orthonormé (O; I; J) deux droites (L) et (D) sont telles que: (L): 2x + y = 2 et (D): 3x-y-3 = 0.


Détermine graphiquement les coordonnées du point d'intersection des droites (D) et (L).

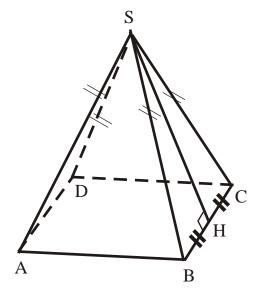
EXERCICE 3

Monsieur Coulibaly est professeur de Mathématiques dans une classe de 36 élèves. Pendant le compte-rendu du devoir, il reproduit au tableau le diagramme circulaire ci-dessous.

- 1) Quel est le mode de la série statistique?
- 2) Recopie et complète le tableau des effectifs suivant:

Note	7	8	10	12	14
Nombre d'élèves					

EXERCICE 4


L'unité de longueur est le centimètre.

Sur la figure ci-contre qui n'est pas en grandeur réelle :

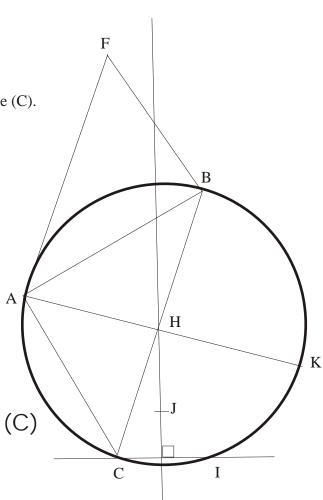
- SABCD est une pyramide régulière à base carrée.
- H est le pied de la hauteur du triangle SBC issue du sommet S.

On donne AB = 6; SA =
$$6\sqrt{2}$$
 et $\sqrt{7} \simeq 2.7$

- 1. Démontre que SH = $3\sqrt{7}$
- 2. Calcule l'aire latérale de la pyramide SABCD

PROBLEME

Dans le plan muni d'un repère orthonormé (O; I; J) (C) est le cercle de centre H et de rayon [AH].


- A(-3; 4); B(1; 6); C(-1; 0) et K sont des points du cercle (C).
- Le point K est le symétrique du point A par rapport à (BC).
- Le point F est l'image du point B par la translation de vecteur CA.
- On donne BC = $2\sqrt{10}$; $\cos 45^{\circ} = \sin 45^{\circ} = \frac{\sqrt{2}}{2}$

1.

- a) Justifie que le triangle ABC est rectangle en A
- b) Détermine les coordonnées du point H centre du cercle (C).

2.

- a) Justifie que $AC = 2\sqrt{5}$
- b) Calcule sin \widehat{ABC} .
- c) Déduis-en que $\widehat{mes} \, \widehat{ABC} = 45^{\circ}$
- 3. Justifie que $mes \widehat{AKC} = 45^{\circ}$
- 4. Détermine les coordonnées du point F.
- 5. Démontre que le quadrilatère ABKC est un carré.

