FICHE DE TD MATHS 3ième : Coordonnées de vecteurs

Prof.: M. TEHUA

Exercice 1

Le plan est muni d'un repère (0, I, J).

On donne les vecteurs : $\overrightarrow{AB}\binom{2}{1}$ et $\overrightarrow{CD}\binom{6}{3}$.

Justifie que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exercice 2

Le plan est muni d'un repère orthonormé (O, I, J).

On donne les vecteurs $\overrightarrow{AB} {\binom{3}{5}}$ et $\overrightarrow{CD} {\binom{5}{-3}}$.

Justifie que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux.

Exercice 3

Le plan est muni d'un repère orthonormé (O, I, J).

On donne \overrightarrow{EF} (-3; 2) et \overrightarrow{GH} (4; -7).

Calcule les coordonnées du vecteur : $\overrightarrow{EF} + \overrightarrow{GH}$.

Exercice 4

Le plan est muni d'un repère orthonormé (0, I, J). On donne \overrightarrow{EF} (5 ; 2).

- a) Détermine les coordonnées du vecteur 2 EF.
- b) Détermine les coordonnées du vecteur -4 EF.

Exercice 5

Pour chaque affirmation, trois réponses sont proposées dont une seule est juste. Entoure la bonne réponse.

	Affirmation	Proposition a	Proposition b	Proposition c
1	Dans le plan muni d'un repère (0, I, J), le couple de coordonnées de	(2;3)	(-3;2)	(3;-2)
	$\overrightarrow{RS} = 3\overrightarrow{OI} \cdot 2\overrightarrow{OJ}$ est			
2	(a ; b) = (3 ; -4) équivaut à	a = 3 et $b = -4$	a = -4 et b = 3	a = 3 ou $b = -4$
3	Si \overrightarrow{PQ} $\binom{-2}{\sqrt{3}}$ alors	$3 \times \overrightarrow{PQ} \begin{pmatrix} -6 \\ \sqrt{3} \end{pmatrix}$	$3 \times \overrightarrow{PQ} \begin{pmatrix} -6 \\ 3\sqrt{3} \end{pmatrix}$	$3 \times \overrightarrow{PQ} \begin{pmatrix} -6 \\ \sqrt{9} \end{pmatrix}$
4	$\overrightarrow{GH} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{RT} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont	xy + x'y' = 0	xy' + x'y = 0	xx' + yy' = 0
	orthogonaux			

Exercice 6

- (O, I, J) est un repère orthonormé du plan. On donne les points A (2; 0); B (6; 2) et C(0; 4).
 - 1) Calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
 - 2) Démontre que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux
 - Calcule les distances AB et AC
 - 4) Détermine la nature du triangle ABC.

Exercice 7

Le plan est muni d'un repère (0, I, J).

On donne deux points E(2; -3); F(0; 3); G(1; 0) et H(x; -4).

- 1) Calcule les coordonnées des vecteurs \overrightarrow{EF} et \overrightarrow{FG} .
- 2) Démontre que les points E ; F et G sont alignés.
- 3) Détermine la valeur de x pour que les vecteurs \overrightarrow{EF} et \overrightarrow{HG} soient orthogonaux.

Exercice 8

Le plan est muni d'un repère (O, I, J). On donne deux points A(4; 4); B(-4; -3); C(-2; 2) et D(8; 1).

- 1) Calcule les coordonnées des vecteurs \overrightarrow{BD} et \overrightarrow{AC} .
- 2) Démontre que les droites (BD) et (AC) sont parallèles.

Exercice 9

Le plan est muni d'un repère (O, I, J).

On donne deux points A(3; 5); B(5; 8); C(1; 0) et D(4; -2).

- Calcule les coordonnées des vecteurs AB et CD.
- 2) Démontre que les droites (AB) et (CD) sont perpendiculaires.

Exercice 10

- (O, I, J) est un repère orthonormé du plan. On donne les points A(2;0); B(-3;5).
 - 1) Calcule les coordonnées des vecteurs \overrightarrow{AB} .
 - 2) Calcule les coordonnées du point I, milieu de [AB].
 - 3) Calcule les distances AI et AB.

Exercice 11

- (O, I, J) est un repère orthonormé du plan. On donne $\overrightarrow{PQ}\begin{pmatrix} -3\\2 \end{pmatrix}$; $\overrightarrow{RS}\begin{pmatrix} -6\\4 \end{pmatrix}$; $\overrightarrow{TU}\begin{pmatrix} -5\sqrt{2}\\2 \end{pmatrix}$ et $\overrightarrow{WV}\begin{pmatrix} -\sqrt{2}\\-5 \end{pmatrix}$.
 - 1) Démontre que les vecteurs \overrightarrow{PQ} et RS sont colinéaires.
 - 2) Démontre que les vecteurs \overrightarrow{TU} et \overrightarrow{WV} sont orthogonaux.