

ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN

AVRIL 1998

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION ECONOMIE

PREMIERE EPREUVE DE MATHEMATIQUES

DUREE: 4 HEURES

L'épreuve se compose d'un exercice et de deux problèmes ; le candidat peut les traiter dans un ordre quelconque.

EXERCICE

P désigne l'ensemble des nombres entiers pairs strictement positifs. Soit n un élément de P.

On cherche à écrire n sous la forme d'une combinaison linéaire des n-1 entiers qui le précèdent, c'est-à-dire 1, 2, 3, ..., n-2, n-1, tous les coefficients de cette combinaison n'étant que +1 ou -1. Par exemple, on a 4=-1+2+3.

En termes plus mathématiques, on cherche pour chaque $n \in P$ une décomposition :

(D)
$$n = \sum_{k=1}^{n-1} \varepsilon_k \, \mathbf{k}$$

où le symbole ε_k est le coefficient +1 ou – 1 à affecter à l'entier k.

- 1 La décomposition d'un entier pair n∈ P est-elle unique ?
- 2 Déterminer le sous-ensemble de P pour lequel existe une décomposition de type (D).

PROBLEME N° 1

On rappelle qu'une suite réelle (u_n) est dite « récurrente d'ordre k » lorsque le terme général u_n dépend des k termes précédents $u_{n-1}, u_{n-2},, u_{n-k}$; les k premières valeurs $u_0, u_1, ..., u_{k-1}$ de la suite sont données comme conditions initiales.

On considère une suite réelle (u_n) , où n est un nombre entier, $n \in N$. La suite (u_n) est une suite récurrente d'ordre 2 définie par la relation :

$$u_{n+2} = (u_{n+1} + u_n) / 2$$

On donne les conditions initiales $u_0 = a$ et $u_1 = b$, où a et b sont deux nombres réels.

- \bullet En utilisant les résultats classiques sur les suites récurrentes d'ordre 2, donner l'expression, en fonction de n et des paramètres a et b, du terme général de la suite u_n .
 - **2** Déterminer la limite du terme général u_n de la suite (u_n) quand $n \to +\infty$.
 - **3** On définit la suite (v_n) , $n \in N$, par :

$$V_n = U_{n+1} - U_n$$

Démontrer que (v_n) est une suite géométrique dont on explicitera la raison.

Donner l'expression générale de v_n en fonction de n, a et b.

Retrouver l'expression du terme général de la suite (u_n) établie à la question 1.

4 On définit la suite (w_n) , $n \in N$, par :

$$W_n = U_{n+1} + U_n / 2$$

Etudier la suite (w_n) .

En déduire que la suite (u_n) peut être mise sous la forme d'une suite récurrente d'ordre 1, de la forme :

$$u_{n+1} = A u_n + B$$

où l'on déterminera les expressions des constantes A et B.

 $oldsymbol{\Theta}$ Pour tout entier n, on définit la suite réelle (x_n) , récurrente d'ordre 2, de la façon suivante :

$$X_{n+2} = (X_{n+1} X_n)^{1/2}$$

On donne $x_0 = 1$ et $x_1 = 2$.

Donner l'expression du terme général x_n de la suite.

Déterminer la limite de x_n quand $n \to +\infty$.

PROBLEME N° 2

On définit, pour tout entier n∈ N, l'intégrale I(n) suivante :

$$I(n) = \int_{0}^{\pi/2} \cos^{n} t \, dt$$

- Calculer I(0), I(1), I(2).
- 2 En effectuant une intégration par parties, établir la relation suivante :

$$n I(n) = (n-1) I(n-2) \quad \forall n \in N$$

- ❸ Montrer que la suite des intégrales I(n) est une suite de termes positifs et qu'elle est décroissante.
 - **4** En déduire que $\lim_{n\to\infty} I(n+1)/I(n) = 1$.
 - **6** On définit Z(n) = (n+1)I(n+1)I(n). Calculer Z(0) et Z(1).
- **6** Montrer par récurrence que, pour tout n, Z(n) est égale à une constante C que l'on explicitera.
 - **7** Démontrer que :

$$\lim_{n\to\infty} \, nI^2(n) = \pi/2$$

3 A l'aide de la relation établie à la question 2, établir les formules suivantes :

$$I(2p) = \frac{1 \times 2 \times 3 \times \times (2p-1)}{2 \times 4 \times 6 \times \times 2p} \pi/2$$

$$I(2p) = \pi C_{2p}^p / (2 \times 4^p)$$

$$I(2p+1) = \underline{2 \times 4 \times 6 \times \dots \times (2p)}$$
$$3 \times 5 \times \dots \times (2p+1)$$

$$I(2p+1) = 4^p / [(2p+1) C_{2p}^p]$$