

ET D'ECONOMIE APPLIQUEE

ABIDJAN

AVRIL 2002

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION ECONOMIE

PREMIERE EPREUVE DE MATHEMATIQUES

DUREE: 4 HEURES

Préliminaires :

• On rappelle que le nombre complexe $z, z \in C$, corps des complexes, peut s'écrire sous les formes algébrique et trigonométrique :

(1)
$$z = a + ib, a \in R, b \in R$$

(2)
$$z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}$$

- Ecrire a et b en fonction de z et de son conjugué, noté z
- Ecrire $\cos\theta$ et $\sin\theta$ en fonction de $e^{i\theta}$ et $e^{-i\theta}$

Première partie :

On considère, pour tout entier n strictement positif, les fonctions f_n et g_n d'une variable réelle définies, pour $0 \le x \le \pi/2$, par :

$$f_n(x) = \sum_{k=1}^{n} \cos 2kx$$

$$g_n(x) = \sum_{k=1}^{n} \sin 2kx$$

- 1) Calculer $f_n(0)$ et $g_n(0)$
- 2) En écrivant cos $2kx + i \sin 2kx = e^{i2kx}$, montrer que $f_n(x)$ peut, pour $0 < x \le \pi/2$, se mettre sous la forme :

$$f_n(x) = [\sin (2n+1)x - \sin x] / 2 \sin x$$

Donner une expression analogue pour $g_n(x)$.

3) α et β étant deux nombres réels, on considère la fonction h(x) définie sur [0 , π /2] par :

$$h(x) = (\alpha x + \beta x^2) / \sin x$$
 pour $0 < x \le \pi/2$

$$h(0) = \alpha$$

Montrer que h est dérivable sur $[0, \pi/2]$. Calculer alors h'(x) pour $x \in [0, \pi/2]$.

Montrer que h' est continue sur $[0, \pi/2]$.

4) Pour tout entier n strictement positif, on définit l'intégrale :

$$H(n) = \int_{[0, \pi/2]} h(x) \sin nx \, dx$$

La notation $\int_{[0, \pi/2]}$ signifie simplement que l'intégrale est prise pour x allant de 0 à $\pi/2$.

- a Montrer que h(x) sin nx est continue sur [0, π /2]. En déduire que H(n) existe.
- b En utilisant <u>une</u> intégration par parties, démontrer qu'il existe un réel K, ne dépendant pas de l'entier n, tel que, pour tout entier n strictement positif, on a :

$$|H(n)| \leq K/n$$

En déduire la limite de H(n) quand n tend vers $+ \infty$.

Deuxième partie :

On considère la suite définie, pour tout entier n strictement positif, par :

$$u_n = \sum_{k=1}^{n} 1/k^2$$

On note par U la limite, si elle existe, de u_n quand n tend vers $+\infty$:

$$U = \sum_{k=1}^{+\infty} 1/k^2$$

5) On note par $J(k; \alpha, \beta)$ l'intégrale suivante :

$$J(k; \alpha, \beta) = \int_{[0, \pi/2]} (\alpha x + \beta x^2) \cos 2kx \, dx$$

Montrer que:

$$J(k; α, β)) = [(-1)^k (α + βπ) - α] / 4k^2$$

Remarque : pour établir ce résultat, on pourra procéder, par exemple, à deux intégrations par parties successives.

6) Déterminer un couple de valeurs (α^*, β^*) pour (α, β) tel que :

$$J(k; \alpha^*, \beta^*)) = 1/4k^2$$

On conservera les valeurs $\alpha = \alpha^*$ et $\beta = \beta^*$ pour toute la suite du problème.

7) Montrer que

$$u_n = 4 \int_{[0, \pi/2]} (-x + x^2/\pi) f_n(x) dx$$

8) Démontrer alors que u_n peut se mettre sous la forme :

$$u_n = 2H(2n+1) - 2 \int_{[0, \pi/2]} (-x + x^2/\pi) dx$$

où H est l'intégrale introduite à la question 4 de la première partie, la fonction h intervenant dans son expression étant prise avec les valeurs (α^*, β^*) des paramètres (α, β) .

9) En déduire que $U = \lim_{n \to +\infty} u_n$ existe et donner la valeur de U.