

ÉCOLE NATIONALE SUPÉRIEÜRE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA – ABIDJAN

INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA – YAOUNDÉ

AVRIL 2005

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Économie

1ère COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 4 heures)

Les deux problèmes sont indépendants et peuvent être traités dans un ordre quelconque.

Problème 1

On considère deux suites (v_n) et (v_n) définies, pour tout entier naturel n, par :

$$u_0 = 0$$
; $u_{n+1} = (3u_n + 1)/4$

$$v_0 = 2$$
; $v_{n+1} = (3v_n + 1)/4$

- 1. Donner les valeurs numériques de (u_h) et (v_n) pour n = 1, 2, 3.
- 2. Etudier la monotonie des suites (u_n) et (v_n) . Montrer que, pour tout n, $u_n < v_n$.
- 3. On considère la suite $s_n = u_n + v_n$; calculer s_0 , s_1 , s_2 . Montrer que la suite (s_n) est une suite constante.
- 4. On considère la suite t_n = v_n u_n.
 Calculer t_{n+1} en fonction de t_n.
 En déduire l'expression de t_n en fonction de n.
- 5. Déduire de ce qui précède les expressions de (v_n) et (v_n) en fonction de n.
- 6. Montrer que les suites (u_n) et (v_n) convergent et calculer leurs limites respectives.

Problème 2

Partie I

Le symbole Ln désigne le logarithme népérien.

Soit n un entier naturel, $n \ge 2$.

On considère les fonctions f_n définies pour x > 0 par :

$$f_n(x) = (1 + nLnx) / x^2$$

- 1. Calculer la dérivée f_n' de f_n. Etudier le signe de f_n'(x).
- 2. Donner la solution a(n) de l'équation $f_n(x) = 0$. Etudier la suite a(n) et trouver la limite de a(n) quand $n \to +\infty$.
- 3. Déterminer les limites de f_n quand $x \to 0_+$ et quand $x \to +\infty$. Construire le tableau de variations de f_n . Donner la valeur M(n) du maximum de f_n .
- 4. On note par C_n la courbe représentative de f_n dans le repère orthonormé usuel. Tracer les courbes C_2 et C_3 sur le même graphe.
- 5. On définit la fonction $D_n(x) = f_{n+1}(x) f_n(x)$. Quelle est sa particularité ? Expliquer très précisément comment il serait possible de construire point par point la courbe C_4 représentant f_4 .

Partie II

- Soit g(x) la fonction définie pour x > 0 par g(x) = (Lnx) / x².
 Calculer l'intégrale indéfinie I = ∫g(x)dx.
 En déduire l'aire A(n) du domaine délimité par les courbes C_n et C_{n+1}, les droites d'équations respectives x = 1 et x= e.
- 7. On note par B(n) l'aire du domaine délimité par la courbe C_n et les droites d'équations respectives x = 1, x = e et y = 0. Calculer B(n).
- 8. Etudier la nature de la suite B(n). Que vaut la limite de B(n) quand $n \to +\infty$?

Partie III

Dans cette partie, on suppose $n \ge 3$. On cherche à résoudre l'équation (E) $f_n(x) = 1$.

9. On pose $u(n) = e^{(n-2)/2n}$. Montrer que, $\forall n \ge 3$, u(n) > 1. Montrer également que, $\forall n \ge 3$, $f_n(u(n)) > 1$.

- 10. L'équation (E) $f_n(x) = 1$ a-t-elle une solution sur l'intervalle]1, u(n) [?
- 11. Démontrer que l'équation (E) $f_1(x) = 1$ admet une solution et une seule sur l'intervalle $D = [u(n), +\infty[$. On notera par $\alpha(n)$ cette solution.
- 12. On considère la suite $(\alpha(n))$, $n \ge 3$. Montrer que pour $n \ge e^2$, on a : $f_n(n^{1/2}) \ge 1$. En déduire que, pour $n \ge 8$, on a l'inégalité $\alpha(n) \ge n^{1/2}$. Donner la limite de la suite $\alpha(n)$ quand $n \to +\infty$.