INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA – YAOUNDÉ

AVRIL 2009

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Économie

1^{ère} COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 4 heures)

L'épreuve est composée d'un exercice et d'un problème indépendants, qui peuvent être traités dans un ordre quelconque.

Exercice:

Fomesouta.com

ga soutra

Docs à portée de main

Soit θ un réel appartenant à l'intervalle J =] - $\pi/2$, + $\pi/2$ [. On considère l'équation (E) de la variable complexe z :

(E)
$$z^2\cos^2\theta - 4z\cos\theta + 5 - \cos^2\theta = 0$$

- 1 Résoudre (E) dans l'ensemble des complexes. On précisera pour quelle(s) valeur(s) de θ l'équation (E) admet une racine double et la valeur de cette racine.
- 2 Le plan complexe étant rapporté à un repère orthogonal, on note par M_1 et M_2 les points du plan complexe dont les affixes respectives sont z_1 et z_2 , solutions de (E).

Donner l'équation cartésienne de la courbe du plan, lieu géométrique de M_1 et M_2 lorsque θ varie dans l'intervalle J.

Problème:

Dans tout le problème, on se place dans l'espace des polynômes, à coefficients réels, d'une variable réelle.

On appelle **polynôme symétrique** un polynôme P dont les coefficients peuvent se lire indifféremment dans un sens comme dans l'autre, et sont donc égaux par paires. L'objectif du problème est d'avancer dans la recherche des solutions de l'équation P(x) = 0.

Plus précisément, pour un polynôme symétrique P_{2n+1} de degré impair 2n+1:

$$P_{2n+1}(x) = \sum_{k=0}^{2n+1} a_k x^k$$

Les coefficients vérifient la relation $a_k = a_{2n-k+1}$ pour k = 0 à n.

De même, pour un polynôme symétrique P_{2n} de degré pair 2n :

$$P_{2n}(x) = \sum_{k=0}^{2n} a_k x^k$$

Les coefficients vérifient la relation $a_k = a_{2n-k}$ pour k = 0 à n-1, le coefficient médian a_n n'étant pas apparié.

Partie 1

On pose y = x + (1/x), pour $x \ne 0$, et $u(k) = x^k + (1/x)^k$, pour k entier, $k \ge 0$ (et donc u(1) = y).

- 1 Calculer u(0) et exprimer u(2) en fonction de y.
- 2 Montrer que u(k+1) peut être exprimé en fonction de u(k), u(k-1) et y au moyen d'une relation R que l'on explicitera précisément.
- 3 En utilisant la relation R établie à la question 2, discuter les conditions d'existence de la solution de R et donner la forme générale de u(k) en fonction de y et de k.
- 4 Montrer que u(k) est un polynôme de degré k en y.
- 5 Calculer u(3), u(4), u(5) et u(6) en fonction de y.

Partie 2

- 1 Donner un exemple de polynôme symétrique de degré 1.
- 2 On considère le polynôme P_2 de degré 2 tel que : $x \mapsto ax^2 + bx + a$, a ≠0. Résoudre l'équation $P_2(x) = 0$.

Dans le cas où P₂ admet deux racines distinctes, les comparer.

Partie 3

Considérons maintenant le polynôme P₃ du troisième degré tel que :

$$x \mapsto ax^3 + bx^2 + bx + a, a \neq 0.$$

1 – Montrer que 0 n'est pas racine de P_3 et que si α est racine de P_3 , alors $1/\alpha$ l'est aussi.

2 – Discuter le nombre de solutions de l'équation $P_3(x) = 0$.

 $3 - \text{Soit P}_3(x) = 7x^3 - 43x^2 - 43x + 7$. Résoudre l'équation $P_3(x) = 0$.

Partie 4

Soit le polynôme P_4 du quatrième degré tel que : $x \mapsto ax^4 + bx^3 + cx^2 + bx + a$, où $a \neq 0$.

1 – Montrer que 0 n'est pas racine de P_4 et que si α est racine de P_4 , alors $1/\alpha$ l'est aussi.

2 – Soit y = x + (1/x), pour x \neq 0, introduite dans la partie 1.

Montrer que $P_4(x) = x^2g(x)$, où g est une fonction de la variable réelle x que l'on explicitera.

Exprimer g en fonction de y et y², et des coefficients a, b, c.

3 - A quelle condition sur a, b et c l'équation $P_4(x) = 0$ admet-elle des solutions ? Montrer que résoudre l'équation $P_4(x) = 0$ revient à résoudre deux équations du second degré.

 $4 - \text{Résoudre l'équation} : 12x^4 + 11x^3 - 146x^2 + 11x + 12 = 0.$

Partie 5

On se place dans le cas général.

1 – Soit P_{2n+1} un polynôme symétrique. Trouver une racine évidente de P_{2n+1}.

2 – Montrer que $P_{2n+1}(x) = H(x).Q_{2n}(x)$ où H est un polynôme de degré 1 que l'on précisera et Q_{2n} un polynôme de degré 2n. On pose :

$$Q_{2n}(x) = \sum_{i=0}^{2n} b_i x^i$$

Exprimer les coefficients a_k , k = 0 à 2n+1, du polynôme P_{2n+1} en fonction des coefficients b_i , i = 0 à 2n, du polynôme Q_{2n} .

Montrer que le polynôme Q_{2n} est un polynôme symétrique.

3 – Montrer que $Q_{2n}(x)/x^n$ peut être mis sous la forme $R_n(y)$ où R_n est un polynôme de degré n de la variable y déjà définie dans la partie 1, et utilisée également dans la partie 4.