

ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA – ABIDJAN INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA – YAOUNDÉ

AVRIL 2008

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Économie

2ème COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 3 heures)

L'épreuve est composée de deux problèmes indépendants, à traiter dans un ordre quelconque.

Problème 1:

1) Soit A la matrice carrée :

$$A = \begin{pmatrix} 5 & -6 \\ 1 & 0 \end{pmatrix}$$

1a) Trouver les valeurs propres λ_1 et λ_2 ($\lambda_1 < \lambda_2$) et des vecteurs propres v_1 et v_2 associés de la matrice A.

On notera D la matrice diagonale formée par les valeurs propres de A rangées dans l'ordre croissant.

1

- 1b) Donner l'expression d'une matrice régulière P telle que A = P D P⁻¹
- 1c) En déduire la matrice Aⁿ, n entier strictement positif.
- 2) On considère la suite récurrente d'ordre 2 définie par :

$$u_{n+2} = 5u_{n+1} - 6u_n$$

avec $u_0 = u_1 = 1$

On note
$$V_{n+2}$$
 le vecteur colonne $\begin{pmatrix} u_{n+2} \\ u_{n+1} \end{pmatrix}$

- 2a) Montrer que $V_{n+2} = A V_{n+1}$
- 2b) En déduire l'expression du terme général u_n en fonction de n.
- 2c) Calculer $\lim_{n\to +\infty} u_n$

Problème 2:

N désigne l'ensemble des nombres entiers naturels.

Pour tout entier non nul n, on définit les sommes suivantes :

$$S_1(n) = 1 + 2 + + n = \sum_{k=1}^{n} k$$

$$S_2(n) = \sum_{k=1}^{n} k^2$$

$$S_3(n) = \sum_{k=1}^{n} k^3$$

Partie I:

- 1) Démontrer que $S_1(n) = n(n + 1)/2$.
- 2) On désire établir une relation entre $S_3(n)$ et $S_1(n)$ de la forme $S_3(n) = h(S_1(n))$. Le plan étant rapporté à un repère orthonormal usuel, d'origine O, on définit par leurs coordonnées les trois suites de points ci-après $(n \ge 1)$:

$$A_n (S_1(n), 0)$$

$$C_n (0, S_1(n))$$

$$B_n (S_1(n), S_1(n))$$

- 2a) Quelle est la forme du quadrilatère $Q_n = (O, A_n, B_n, C_n)$?
- 2b) Donner l'aire q_n de Q_n
- 2c) Pour $n \geq 2$, donner l'aire p_n du polygone $(A_{n\text{-}1},\,A_n,\,B_n,\,C_n,\,C_{n\text{-}1},\,B_{n\text{-}1},\,A_{n\text{-}1})$
- 2d) En déduire la relation $S_3(n) = h(S_1(n))$, et l'expression de $S_3(n)$ en fonction de n.

Partie II:

On considère le polynôme à coefficients réels défini par :

$$P(x) = ax + bx^2 + x^3/3$$

et vérifiant la relation suivante :

$$\forall x \in R, P(x + 1) - P(x) = x^2$$

- 1) Calculer P(0), P(1), P(2), P(3), P(-1).
- 2) Calculer les coefficients a et b.
- 3) Montrer que la somme $S_2(n)$ est égale à la valeur du polynôme P en un point que l'on précisera.
- 4) Donner l'expression explicite de $S_2(n)$ en fonction de n.

Partie III:

On définit $I_3(n) = \sum_{k=1}^{n} (2k-1)^3$, somme des cubes des n premiers nombres impairs.

- 1) A l'aide des expressions de $S_1(n)$, $S_2(n)$ et $S_3(n)$ trouvées dans les deux premières parties, montrer que $I_3(n) = 2n^4 n^2$.
- 2) Déterminer l'entier n tel que la somme des cubes des n premiers nombres entiers impairs soit égale à 29 161.
- 3) Donner en fonction de n l'expression de $U_3(n) = \sum_{k=1}^{n} (2k)^3$, somme des cubes des n premiers nombres pairs.