## ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA – ABIDJAN

## INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA – YAOUNDÉ

#### **AVRIL 2009**

# CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

# **ISE Option Économie**

# 2ème COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 3 heures)

L'épreuve est composée de deux exercices et d'un problème indépendants, qui peuvent être traités dans un ordre quelconque.



#### Exercice n° 1

Soit f une application de ]0, 1 [ dans R<sup>+</sup> définie par  $x \to f(x) = x - 2x^{1/2} + 1$ . Le symbole o représente la composition des applications.

Montrer que f o f (x) = x.

# Exercice n° 2

Un individu vit dans un environnement où il est susceptible d'être contaminé par une maladie. Son état de santé est suivi mensuellement.

Pour un mois donné m, trois états sont possibles :

- il est immunisé (état I)
- il est malade (état M)
- il est non malade et non immunisé (état S)

D'un mois m au mois suivant m+1, son état peut évoluer selon les règles épidémiologiques suivantes :

- étant immunisé au mois m, il peut, au mois m+1, être encore immunisé avec une probabilité 0,9 ou passer à l'état S avec une probabilité 0,1
- étant malade au mois m, il peut, au mois m+1, être encore malade avec une probabilité 0,2 ou passer à l'état immunisé avec une probabilité 0,8
- étant en l'état S au mois m, il peut, au mois m+1, être encore en l'état S avec une probabilité 0,5 ou passer à l'état malade M avec une probabilité 0,5.

- 1 Ecrire la matrice A qui résume les probabilités de transition entre l'état du mois m et l'état du mois m+1.
- 2 Dans chacun des cas suivants, calculer les probabilités pour qu'un individu soit dans l'état e au mois m+2, e = I ou M ou S, sachant :
  - a) qu'il était immunisé au mois m
  - b) qu'il était non malade et non immunisé au mois m
  - c) qu'il était malade au mois m



### **Problème**

Le symbole Ln désigne le logarithme népérien.

On considère la suite de fonctions numériques  $f_n$  où, pour tout entier n strictement positif, la fonction  $f_n$  est définie sur l'intervalle  $]0, +\infty$  [ par :

$$f_n(x) = (Ln x) / x^n$$

- 1 Etudier précisément les variations de  $f_n$ , pour  $n \ge 1$  (limites, points particuliers, ...). Soient  $x_M$  et  $y_M$  les coordonnées du point M en lequel  $f_n$  passe par son maximum. Déterminer le lieu géométrique de M, courbe décrite par le point M, lorsque n varie sur l'ensemble des nombres entiers.
- $2-Pour \ tout \ r\acute{e}el \ u, \ u \ \ge 1, \ on \ d\acute{e}finit \ l'intégrale \ J_n(u) \ par :$

$$J_n(u) = \int_1^u f_n(x) dx$$

 $2a - Exprimer J_n(u)$  en fonction de u et de n.

(Indication : on pourra être conduit à distinguer les cas n = 1 et  $n \ge 2$ ). Calculer  $J_n(2)$ .

 $2b - On pose F_n(u) = J_n(u) - J_n(2)$ .

Exprimer  $F_n(u)$  en fonction de u et de n.

2c – Déterminer  $\underset{u \to +\infty}{\text{Lim}} J_n(u)$  et  $\underset{u \to +\infty}{\text{Lim}} F_n(u)$ 

3 – Pour tout entier  $n \ge 2$ , on considère la suite v définie par son terme général d'ordre p, p entier strictement supérieur à 2 :

$$v(p) = \sum_{k=2}^{p} f_n(k) = \sum_{k=2}^{p} (Ln k)/k^n$$

3a - Montrer que la suite v(p) est croissante.

3b - Montrer que pour tous entiers n et k,  $n \ge 2$ ,  $k \ge 2$ , on a :

$$f_n(k+1) \le \int\limits_{k}^{k+1} f_n(x) dx \le f_n(k)$$



 $3c - En déduire que v(p) - (Ln2)/2^n \le F_n(p) \le v(p) - (Ln p)/p^n$ .

3d - Trouver un encadrement pour v(p).

3e – Montrer que v(p) est une suite majorée. Justifier l'existence d'une limite de la suite v(p), que l'on notera  $V: V = \underset{p \to +\infty}{\text{Lim}} v(p)$ .

Déduire de ce qui précède un encadrement pour V. Application numérique : n = 5 (on donne :  $Ln \ 2 = 0,693$ )

3f – A partir de quelle valeur de n la longueur de l'intervalle encadrant V est inférieure ou égale à 0,001 ?