AVRIL 2012

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Économie

2^{ème} COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 3 heures)

L'épreuve est composée d'un exercice et deux problèmes indépendants, qui peuvent être traités dans un ordre quelconque.

Exercice

Le paramètre a est un réel strictement positif, a > 0.

Soit une application $f:[0, a] \to R$ continue, vérifiant pour tout réel $x, 0 \le x \le a$, les deux conditions suivantes :

$$f(x) \neq -1$$

$$f(x)$$
. $f(a-x)=1$

Calculer l'intégrale I = $\int_{0}^{a} \frac{1}{1 + f(x)} dx$

Problème 1

(les trois parties sont indépendantes)

Partie A

Soit la suite (u_n) , $n \in \mathbb{N}$, définie par :

$$u_0 > 0, u_1 > 0$$

(1)
$$\forall n \in \mathbb{N}, u_{n+2} = (u_n^2 u_{n+1})^{1/3}$$

1) Calculer le terme général de la suite (u_n) .

Indication: on pourra faire intervenir une autre suite (v_n) , telle que $v_n = h(u_n)$, où h est une fonction mathématique simple, permettant de transformer l'expression (1) en une expression (1') liant de façon linéaire v_n , v_{n+1} , v_{n+2} .

2) Déterminer la limite de u_n quand n tend vers $+\infty$.

Partie B

Soit la suite (u_n) , $n \in \mathbb{N}$, définie par :

$$u_0 > 0$$
, $u_1 > 0$

(2)
$$\forall n \in \mathbb{N}, u_{n+2} = 2 u_n u_{n+1} / (u_n + u_{n+1})$$

1) Calculer le terme général de la suite u_n .

Indication: on pourra faire intervenir une autre suite (v_n) , telle que $v_n = h(u_n)$, où h est une fonction mathématique simple, permettant de transformer l'expression (2) en une expression (2') liant de façon linéaire v_n , v_{n+1} , v_{n+2} .

2) Déterminer la limite de u_n quand n tend vers $+\infty$.

Partie C

Soit la suite (u_n) , $n \in \mathbb{N}$, définie par :

$$u_0 = u_1 = u_2 = 1$$

(3)
$$\forall n \in \mathbb{N}, u_{n+3} = (1 + u_{n+2}u_{n+1}) / u_n$$

- 1) Calculer les premiers termes de (u_n) , pour n = 3 à 8.
- 2) Montrer par récurrence que l'on peut écrire la suite (u_n) sous la forme (4):

2

(4)
$$\forall n \geq 0, u_{n+4} = a u_{n+2} + b u_n$$

où a et b sont des entiers que l'on déterminera.

3) En déduire que $\forall n \in \mathbb{N}, u_n \in \mathbb{N}^*$.

Problème 2

Partie 1

Soit A un réel non nul.

Montrer que, pour tout n entier naturel non nul, on peut déterminer une suite unique de n+1 nombres réels $(t_0, t_1, \ldots, t_{n-1}, t_n)$ vérifiant les trois conditions suivantes :

- (i) $t_0 = 0, t_n = A$
- (ii) $t_0 < t_1 < \dots t_{n-1} < t_n$
- (iii) $\forall k \in \{0, ..., n-1\} \ t_{k+1} t_k = A/n$

Partie 2

Soit la fonction $f:[0,1] \rightarrow R$, continue et strictement positive.

1) Montrer que, pour tout n entier non nul, il existe dans $[0, 1]^{n+1}$ une suite unique de n+1 nombres réels $(x_0, x_1, \ldots, x_{n-1}, x_n)$ vérifiant les trois conditions suivantes :

3

(i)
$$x_0 = 0, x_n = 1$$

(ii)
$$x_0 < x_1 < \dots x_{n-1} < x_n$$

(iii)
$$\forall k \in \{0,, n-1\} \int_{x_k}^{x_{k+1}} f(t) dt = \frac{1}{n} \int_{0}^{1} f(t) dt$$

2) Soit
$$U(n) = \frac{1}{n} \sum_{k=0}^{n} f(x_k)$$
.

Déterminer la limite L de U(n) quand n tend vers $+\infty$.

3) Calculer L dans le cas particulier de $f(x) = e^x$