AVRIL 1998

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION MATHEMATIQUES

CORRIGE DE LA DEUXIEME EPREUVE DE MATHEMATIQUES

*

* *

EXERCICE n° 1

 $\det(M-\lambda I) = (1-\lambda)^3 - \frac{1}{2}(1-\lambda) = (1-\lambda)((1-\lambda)^2 - \frac{1}{2}).$ Les valeurs propres de la matrice sont : $1,1\pm\frac{1}{\sqrt{2}}$. Ces trois valeurs étant strictement positives, la matrice est définie positive.

Soit $X = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$. La matrice de la projection orthogonale sur F au

sens du produit scalaire défini par M est égale à : $X(X^{'}MX)^{-1}X^{'}M$, où $M^{'}$ désigne la transposée de M.

Calculons $P_F(u)$ pour $u \in \mathbf{R}^3$,

$$X'M = \begin{pmatrix} 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$
 et $X'MX = I_2$, d'où $X(X'MX)^{-1}X'M = \begin{pmatrix} 0 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$

Pour
$$u = (x, y, z)$$
, on a $P_F(u) = (0, \frac{1}{2}x + y, \frac{1}{2}x + z)$

EXERCICE n° 2

lacktriangle La décomposition de ϕ en carrés selon la méthode de Gauss donne :

$$\phi(x) = 2x_1x_2 + x_1(3x_3 + 4x_4) + 5x_2x_3$$

$$\phi(x) = \frac{1}{2}(2x_2 + 3x_3 + 4x_4)(2x_1 + 5x_3) - \frac{5}{2}x_3(3x_3 + 4x_4)$$

On détermine alors deux formes linéaires l_1 et l_2 sur E par :

$$l_1 + l_2 = 2x_2 + 3x_3 + 4x_4$$
 et $l_1 - l_2 = 2x_1 + 5x_3$

On obtient,

$$l_1 = x_1 + x_2 + 4x_3 + 2x_4$$
 et $l_2 = -x_1 + x_2 - x_3 + 2x_4$

De même, on détermine deux formes linéaires l_3 et l_4 sur E par :

$$l_3 + l_4 = 3x_3 + 4x_4$$
 et $l_3 - l_4 = x_3$, d'où $l_3 = 2(x_3 + x_4)$ et $l_4 = x_3 + 2x_4$

On obtient ainsi,

$$\phi(x) = \frac{1}{2}(l_1^2 - l_2^2) - \frac{5}{2}(l_3^2 - l_4^2)$$

$$\phi(x) = \frac{1}{2}(x_1 + x_2 + 4x_3 + 2x_4)^2 - \frac{1}{2}(x_1 - x_2 + x_3 - 2x_4)^2 - 10(x_3 + x_4)^2 + \frac{5}{2}(x_3 + 2x_4)^2$$

La signature de ϕ est donc (2,2,n-4). Si n=4, ϕ est non dégénérée.

2 Pour obtenir une base ϕ -orthogonale de E, il suffit de transformer la base initiale de E par la matrice P définie par son inverse

$$P^{-1} = \begin{pmatrix} 1 & 1 & 4 & 2 \\ 1 & -1 & 1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Dans cette base ϕ s'écrit : $\phi(x) = \frac{1}{2} X_1^2 - \frac{1}{2} X_2^2 - 10 X_3^2 + \frac{5}{2} X_4^2$

EXERCICE n° 3

1 Les vecteurs de F sont invariants par S_F et P_F . On a $E = F \oplus F^{\perp}$, donc pour tout $x \in E$, $x = P_F(x) + (x - P_F(x))$. Géométriquement on obtient $S_F(x) = x - 2(x - P_F(x))$ ou encore $S_F = 2P_F - I$.

2 Pour F = Vect(a) et pour $x \in E$, on a :

$$P_F(x) = \frac{(x,a)}{\|a\|^2} a$$
 et $S_F(x) = 2\frac{(x,a)}{\|a\|^2} a - x$

En effet, $e = \frac{a}{\|a\|}$ est une base orthonormée de F, donc $P_F(x) = \lambda e$ avec

$$\lambda(x,e) = (x, \frac{a}{\|a\|}) = \frac{1}{\|a\|}(x,a)$$

Pour
$$F=a^{\perp}$$
, comme $E=Vect\,(a)\oplus a^{\perp}$, on a $P_E=I=P_{vect(a)}+P_{a^{\perp}}$. On en déduit :
$$S_F=2P_F-I=2(I-P_a)-I=I-P_a \text{ et}$$

$$S_F(x)=x-2\frac{(x,a)}{\|a\|^2}a$$

$$\text{Pour } F = a^{\perp}, \ P_F = \begin{pmatrix} 0 & 0 & . & 0 \\ 0 & 1 & . & 0 \\ . & . & 1 & . \\ 0 & 0 & . & 1 \end{pmatrix} \text{ et } S_F = \begin{pmatrix} -1 & 0 & . & 0 \\ 0 & 1 & 0 & . \\ . & 0 & 1 & 0 \\ 0 & . & 0 & 1 \end{pmatrix}$$

EXERCICE n° 4

$$\mathbf{0} \text{ On a } D_n = \begin{vmatrix} a+b & ab & 0 & . & 0 \\ 1 & a+b & ab & 0 & . \\ 0 & 1 & a+b & ab & 0 \\ . & 0 & . & . & ab \\ 0 & 0 & 0 & 1 & a+b \end{vmatrix}$$

En développant ce déterminant par rapport à la première colonne, on trouve :

$$D_n = (a+b)D_{n-1} - abD_{n-2}$$

2 On vérifie que $D_n = \sum_{k=0}^n a^k b^{n-k}$.

PROBLEME

$$\mathbf{0} \quad X'X = \begin{pmatrix} X_1 \\ \cdot \\ X_p \end{pmatrix} \begin{pmatrix} X_1 & \cdot & X_p \end{pmatrix} = \begin{pmatrix} \left\| x_1 \right\|^2 & \cdot & \left\langle x_i, x_j \right\rangle \\ \cdot & \cdot & \cdot \\ \left\langle x_i, x_j \right\rangle & \cdot & \left\| x_p \right\|^2 \end{pmatrix} = G(x_1, \dots, x_p),$$

X'X est appelée matrice de Gram.

On choisit x_{p+1} orthogonal à tous les vecteurs $\left\{x_1, ..., x_p\right\}$ et unitaire, puis x_{p+2} orthogonal à tous les vecteurs $\left\{x_1, ..., x_p, x_{p+1}\right\}$ et unitaire. Ainsi, on obtient par la méthode de Gauss :

$$\begin{split} \left\langle x_i, x_j \right\rangle &= 0, \forall 1 \leq i \leq p, \forall p+1 \leq j \leq n \\ \left\langle x_j, x_j \right\rangle &= 1, \ \forall p+1 \leq j \leq n \\ \left\langle x_i, x_j \right\rangle &= 0, \ \forall p+1 \leq i, j \leq n \ i \neq j \end{split}$$

Ceci correspond à l'égalité demandée.

D'autre part, $(\det \hat{X})^2 = \det \hat{X}^{'}\hat{X} = \det X^{'}X$ et $\det G(x_1,...,x_p) = \det X^{'}X = \det X^{'}X . \det I_{n-p} = \det G(x_1,...,x_n)$, d'où l'égalité. Il est clair qu'alors $\det G(x_1,...,x_p) > 0$.

On peut compléter les deux familles libres de vecteurs $\left\{x_1,...,x_p\right\}$ et $\left\{x_1,...,x_{p-1},x_p+\sum_{i=1}^{p-1}\lambda_ix_i\right\}$, qui engendrent le même sous-espace vectoriel, par les mêmes vecteurs $\left\{x_{p+1},...,x_n\right\}$ et obtenir ainsi,

$$(\det \hat{X})^2 = \det G(x_1, ..., x_p)$$
 et $(\det \hat{X})^2 = \det G(x_1, ..., x_{p-1}, x_p + \sum_{i=1}^{p-1} \lambda_i x_i)$

D'où le résultat demandé :

$$\det G(x_1, ..., x_{p-1}, x_p) = \det G(x_1, ..., x_{p-1}, x_p + \sum_{i=1}^{p-1} \lambda_i x_i)$$

On a $P_F(y) = \sum_{j=1}^p \lambda_j x_j$. Si $y \notin F$, les vecteurs $\left\{x_1, ..., x_p, y\right\}$ sont indépendants et on applique le résultat précédent à l'ordre p+1 (dans ce cas le vecteur $y-P_F(y)$ est orthogonal à F). Si $y \in F$, $y-P_F(y)=0$ et $y=P_F(y)=\sum_{j=1}^p \lambda_j x_j$, dans ce cas les deux déterminants sont nuls.

$$G(x_1,...,x_p, y - P_F(y)) = \begin{pmatrix} X'X & 0 \\ 0 & \|y - P_F(y)\|^2 \end{pmatrix}$$

On a les trois égalités suivantes :

$$\det G(x_1,...,x_p, y - P_F(y)) = \det G(x_1,...,x_p, y)$$

$$\det G(x_1,...,x_p, y - P_F(y)) = \det G(x_1,...,x_p, y) \times ||y - P_F(y)||^2$$

$$(d(y,F))^2 = ||y - P_F(y)||^2$$

On en déduit,

$$(d(y,F))^{2} = \frac{\det G(x_{1},...,x_{p},y)}{\det G(x_{1},...,x_{p})}$$

$$\bullet G(x_{1},...,x_{p},y) = \begin{pmatrix} X^{'}X & X^{'}y \\ y^{'}X & \|y\|^{2} \end{pmatrix}.$$
Formesoura.com

D'où $\det G(x_1,...,x_p,y) = \det X'X \times \det (\|y\|^2 - y'X(X'X)^{-1}X'y)$ ou encore,

$$\det G(x_1,...,x_p,y) = (\|y\|^2 - y'X(X'X)^{-1}X'y) \times \det G(x_1,...,x_p)$$

D'autre part, $(d(y,F))^2 = \|y - P_F(y)\|^2 = \|y - X(X^TX)^{-1}X^Ty\|^2$ En développant cette dernière expression, on obtient :

$$||y||^2 - y'X(X'X)^{-1}X'y = (d(y,F))^2$$
 et donc,

$$(d(y,F))^{2} = \frac{\det G(x_{1},...,x_{p},y)}{\det G(x_{1},...,x_{p})}$$