ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN

AVRIL 2002

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION MATHEMATIQUES

DEUXIEME EPREUVE DE MATHEMATIQUES

DUREE: 4 HEURES

EXERCICE n° 1

Soient deux nombres réels a et b strictement positifs fixés. Pour tout entier naturel n, on pose $u_n = \prod_{k=0}^n \frac{a+k}{b+k}$ et $S_n = \sum_{k=0}^n u_k$.

1 Simplifier l'expression de u_n dans le cas b=a+1.

En déduire que, si $b \le a+1$, la série $\sum_{n=0}^{+\infty} u_n^2$ diverge.

On suppose dans toute la suite que b>a+1

- **2** Montrer que pour tout entier n, on a : $(b-a-1)S_n = a (n+1+b)u_{n+1}$
- **3** En déduire que la série $\sum_{n=0}^{+\infty} u_n$ converge. On note S sa somme.
- Montrer que la suite $(n+b)u_n$ converge, puis que sa limite est nécessairement nulle. En déduire la valeur de S.

EXERCICE n° 2

Soit f une fonction réelle définie continue sur [0,1]. On pose : $a_n = \int_0^1 x^n f(x) dx$, pour tout entier naturel n. On suppose $a_n = 0$ pour tout entier naturel n.

On veut montrer que f est alors identiquement nulle sur [0,1]. Pour ce faire, on raisonne par l'absurde en supposant f non nulle.

• Montrer qu'il reste un intervalle fermé $[\alpha,\beta]\subset[0,1]$ sur lequel f garde un signe constant sans s'annuler.

On supposera dans la suite que f est strictement positive sur $[\alpha, \beta]$.

 $oldsymbol{2}$ Montrer qu'il existe un polynôme P défini sur l'ensemble des nombres réels tel que :

$$\begin{cases} P(x) \ge 0 & \forall x \in [0,1] \\ P(x) > 1 & \forall x \in]\alpha, \beta[\\ P(x) < 1 & \forall x \notin [\alpha,\beta] \end{cases}$$

- **3** Montrer que ce polynôme vérifie : $\lim_{n\to+\infty} \int_0^1 f(x) (P(x))^n dx = +\infty$
- Montrer directement que : $\int_{0}^{1} f(x)(P(x))^{n} dx = 0$ pour tout entier naturel n. Conclure.

EXERCICE n° 3

Pour tout entier naturel non nul n, on définit la fonction réelle f_n par la relation $f_n(x) = \frac{x^n \sin(nx)}{n}$

 $\textbf{0} \ \, \text{Soit} \ \, a \in]0,1[\ \, \text{un réel fix\'e. Montrer que , pour tout entier naturel non } \\ \text{nul } n \, , \, \text{la fonction } f_n \ \, \text{est d\'erivable et que la s\'erie } \sum_{n=1}^{+\infty} f_n^{\ \, }(x) \ \, \text{converge normalement } \\ \text{sur l'intervalle } \left[-a,a\right].$

En déduire que la série $\sum_{n=1}^{+\infty} f_n(x)$ converge simplement sur l'intervalle]-1,1[vers une fonction f de classe C^1 sur]-1,1[, et que f est la somme de la série $\sum_{n=1}^{+\infty} f_n(x)$

- **3** Calculer, pour tout $x \in]-1,1[$, la somme de la série $\sum_{n=1}^{+\infty} f_n(x)$
- **4** En déduire que, pour tout $x \in]-1,1[$, $f(x)=Arctan\left(\frac{x\sin x}{1-x\cos x}\right)$

EXERCICE n° 4

Les deux questions sont indépendantes. R désigne l'ensemble des nombres réels, R_+^* celui des nombres réels strictement positifs et C^p les fonctions continûment dérivables jusqu'à l'ordre p.

Soit $f \in C^2(R_+^*,R)$ telle qu'il existe $l = \lim_{x \to 0} f(x)$ et que, dans un voisinage à droite de zéro, $f^{''}(x) \ge -\frac{k}{x^2}$, où k est une constante. Montrer que $\lim_{x \to 0} x \, f^{'}(x) = 0$

2 Soit $f \in C^5(R,R)$ une fonction impaire vérifiant :

(1)
$$f(0) = 0$$

(2) $\exists M > 0, \forall x \in R, |f^{5}(x)| \le M$

Montrer que pour tout réel x, $\left| f(x) - \frac{x}{3} f'(x) \right| \le \lambda M |x|^5$

Déterminer, la meilleure constante possible λ

EXERCICE n° 5

Soit (x_n) une suite réelle monotone telle que $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nx_k=l$

- **1** Montrer que la suite (x_n) est convergente vers l
- 2 Montrer que le résultat n'est plus vrai si la suite n'est pas monotone

EXERCICE n° 6

Soit f une fonction numérique définie sur $I =]-1, +\infty[$ par :

$$f(x) = \begin{cases} \frac{x}{1+x} & \text{si } x \in I - Q \\ \frac{p}{p+q+1} & \text{si } x = \frac{p}{q} \in I \cap Q \end{cases}$$

où p et q sont premiers entre eux, q > 0, Q désigne l'ensemble des nombres rationnels et Q^* l'ensemble des nombres rationnels non nuls.

- \bullet Montrer que f est continue en 0.
- ${f 2}$ Etudier la continuité de f sur ${\it Q}^* \cap {\it I}$
- **3** Etudier la continuité de f sur I-Q