CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

CORRIGÉ DE LA 2^{ème} COMPOSITION DE MATHÉMATIQUES

Dans toute cette épreuve, R désigne l'ensemble des nombres réels.

Exercice nº 1

1. Soient $f(x) = \cos x Ln(\sin x)$ et $g(x) = \cos x Ln(tg x)$.

En 0, $\sqrt{x} f(x) \to 0$ et $f(\pi/2) = 0$, donc f est intégrable sur l'intervalle $]0, \pi/2[$. En $\pi/2$, on peut prolonger g par continuité en posant $g(\pi/2) = 0$. En 0, $\sqrt{x} g(x) \to 0$, donc g est intégrable sur l'intervalle $]0, \pi/2[$.

2.
$$\int_{0}^{\pi/2} \cos x Ln(\sin x) dx = \int_{0}^{1} Lnu du$$
, en posant $u = \sin x$,

et
$$\int_{0}^{1} Lnu \, du = [uLnu - u]_{0}^{1} = -1$$

3.
$$\int_{0}^{\pi/2} \cos x \, Ln(tg\, x) dx = \frac{1}{2} \int_{0}^{1} Ln(1-u^2) \, du = \frac{1}{2} \Big[-(1-u)Ln(1-u^2) \Big]_{0}^{1} - \int_{0}^{1} \frac{u}{1+u} \, du = Ln2 - 1$$

Exercice n° 2

Soit la fonction gamma définie par : $\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$

- 1. Au voisinage de 0, $e^{-t}t^{x-1}$ est équivalent à t^{x-1} qui est intégrable pour x > 0 et l'intégrale est convergente à $+\infty$. Son domaine de définition est R^{+*} .
 - 2. En effectuant une intégration par parties, on obtient :

$$I_n(x) = \int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n dt = \frac{n^x n!}{x(x+1)...(x+n)}.$$

3.
$$(1-\frac{t}{n})^n = e^{nLog(1-t/n)}$$
 qui tend vers e^{-t} .

4.
$$\Gamma(x) = \lim_{n \to \infty} \frac{n^x n!}{x(x+1)...(x+n)}$$
 d'après les questions précédentes.

1

Exercice n° 3

Soit y(x) une fonction de classe C^2 sur R . On considère l'équation différentielle suivante :

y''(x) + xy'(x) + 2y(x) = 0 avec les conditions : y(0) = 0 et y'(0) = -1

- 1. Soit $y(x) = -xe^{-x^2/2}$, $y'(x) = e^{-x^2/2}(x^2 1)$, $y''(x) = e^{-x^2/2}(3x x^3)$ et l'équation différentielle précédente est vérifiée ainsi que les conditions. L'ensemble des solutions de l'équation différentielle (sans tenir compte des conditions initiales) est un espace vectoriel de dimension 2 et en fixant les deux conditions, on obtient une unique solution.
- 2. On suppose que f est solution de l'équation

$$f(x) = -1 - \int_{0}^{x} (2x - t) f(t) dt$$
Alors $f(x) = -1 - \int_{0}^{x} 2x f(t) dt + \int_{0}^{x} t f(t) dt$

Formesoura compose a portée de main

On a f(0) = -1 et f est dérivable avec $f'(x) = -2\int_{0}^{x} f(t) dt - 2xf(x) + xf(x)$

La fonction $y: x \to x \int_0^x f(t) dt$ est donc solution de l'équation différentielle y''(x) + xy'(x) + 2y(x) = 0 avec les conditions initiales précédentes. D'après la première question $y(x) = -xe^{-x^2/2}$ et $f(x) = (x^2 - 1)e^{-x^2/2}$

Exercice n° 4

Pour k > 1 et $x \in R$ positif, on pose

$$f_k(x) = \frac{((k-1)x+1)^{k/k-1} - kx - 1}{k}$$

et

$$f_k^*(y) = \sup_{x \in R} (xy - f_k(x))$$

1. Pour k=2, $f_k(x) = \frac{1}{2}x^2$ et $f_k^*(y) = \sup_y (xy - \frac{1}{2}x^2) = \frac{1}{2}y^2$. Cette borne supérieure est atteinte pour x=y.

2

- 2. Etude de la convexité de $f_k(x)$. On a : $k f_k(x) = k((k-1)x+1)^{k/k-1} 1$). Posons $u = ((k-1)x+1)^{k/k-1} 1$, on obtient : $u' = ((k-1)x+1)^{-k/k-1} > 0$, la dérivée seconde de $f_k(x)$ étant strictement positive, la fonction est convexe. (Comme k > 1 et $x \in R$ positif, la racine est bien définie).
- 3. Calcul de $f_k^*(y)$ pour tout k > 1. Soit $g(x) = xy f_k(x)$, alors $g'(x) = y f_k'(x) = 0$ pour $x = \frac{(y+k)^{k-1} 1}{k-1}$ et $f_k^*(y) = \frac{(1+y)^k ky 1}{k(k-1)}$

Fomesoura.com ça soutra Docs à portée de main

Exercice n° 5

Soit A une partie non vide de R^2 et $a \in A$. On pose,

$$T(A,a) = \left\{ u \in \mathbb{R}^2 \mid \exists (x_n) \in A, \exists \lambda_n > 0, x_n \to a, \lambda_n(x_n - a) \to u \right\}$$

- 1. $(0,0) \in T(A,a)$, il suffit de prendre $x_n = a$ et $\lambda_n = 1$.
- 2. Soit $u \in T(A, a)$, $\forall \mu > 0$, $\mu \lambda_n(x_n a) \rightarrow \mu u$ et $\mu u \in T(A, a)$, donc cet ensemble est stable par homothétie positive.
- 3. Montrons que T(A,a) est un ensemble fermé de R^2 . Soit u^i une suite de points de T(A,a) et $u=L\underset{i}{i}mu^i$. Comme $u^i\in T(A,a)$, $\exists \lambda^i_{p_i}>0$, $\exists x^i_{p_i}\in A$, $x^i_{p_i}\to a$,

 $\lambda_{p_i}^i(x_{p_i}^i-a) \to u^i$. Pour tout n, $\exists k_n > 0$ tell que $\left|\lambda_{k_n}^n(x_{k_n}^n-a) - u^n\right| < \frac{1}{n}$ et alors $x_{k_n}^n \to a$, $\lambda_{k_n}^n(x_{k_n}^n-a) \to u$ et $u \in T(A,a)$, ce qui montre que T(A,a) est un ensemble fermé de R^2 .

4. Montrons que T(A,a) est un ensemble convexe de R^2 si A est une partie convexe de R^2 . Soient $u,v \in T(A,a)$ et $0 < \lambda < 1$:

$$\exists (u_n) \in A, \exists \lambda_n > 0, u_n \to a, \lambda_n(u_n - a) \to u$$

$$\exists (v_n) \in A, \exists \alpha_n > 0, v_n \to a, \alpha_n(v_n - a) \to v \text{ et}$$

$$\lambda \lambda_n(u_n - a) + (1 - \lambda)\alpha_n(v_n - a) \to \lambda u + (1 - \lambda)v.$$

Par ailleurs.

$$\lambda \lambda_n (u_n - a) + (1 - \lambda) \alpha_n (v_n - a) = (\lambda \lambda_n + (1 - \lambda) \alpha_n) (\frac{\lambda \lambda_n u_n + (1 - \lambda) \alpha_n v_n}{\lambda \lambda_n + (1 - \lambda) \alpha_n} - a), \text{ ou encore,}$$

$$\lambda \lambda_n (u_n - a) + (1 - \lambda) \alpha_n (v_n - a) = \beta_n (w_n - a)$$
 avec

$$\beta_n(w_n - a) \to \lambda u + (1 - \lambda)v$$
,

 $w_n \in A$, car A est une partie convexe de R^2 ,

$$w_n = \frac{\lambda \lambda_n u_n + (1 - \lambda)\alpha_n v_n}{\lambda \lambda_n + (1 - \lambda)\alpha_n} \to a \qquad \text{car } \|w_n - a\| \le Max(\|u_n - a\|, \|v_n - a\|).$$

En conclusion $\lambda u + (1 - \lambda)v \in T(A, a)$

- 5. Soit $A = R^+ \times R^+$, explicitons T(A,a) pour a = (0,0). On vérifie facilement que $T(A,a) = R^+ \times R^+$
- 6. Soit $A = \{(x, y) \in R^2 / x \ge 0, y \ge 0, y \ge x^2, x \ge y^2 \}$, explicitons T(A, a) pour a = (0, 0). Soit $u = (x, y) \in T(A, a)$, $\exists (x_n, y_n) \in A, \exists \lambda_n > 0, x_n \ge 0, y_n \ge 0, y_n \ge x_n^2, x_n \ge y_n^2, \lambda_n x_n \to x, \lambda_n y_n \to y$

En multipliant par λ_n les inégalités, on obtient :

 $y_n \geq x_n^2 \Rightarrow \lambda_n \, (y_n - x_n^2) \geq 0 \Rightarrow \lambda_n \, y_n - \lambda_n x_n \, x_n \geq 0 \, \text{et}$ par passage à la limite, $y \geq 0$. De même, $x \geq 0$. On a donc $T(A,a) \subset R^+ \times R^+$. Réciproquement, on pose, pour $(x,y) \in R^+ \times R^+$, $x_n = x/n, y_n = y/n, \lambda_n = n \, \text{et}$ on vérifie que cette suite (x_n,y_n) appartient à l'ensemble A pour n grand.

Exercice n° 6

On a $u_n = Ln(1+\sin\left(\frac{(-1)^n}{n^\alpha}\right)) = \frac{(-1)^n}{n^\alpha} - \frac{1}{2n^{2\alpha}} + o(\frac{1}{n^{2\alpha}}) = v_n + w_n$ avec $v_n = \frac{(-1)^n}{n^\alpha}$ et $w_n = -\frac{1}{2n^{2\alpha}} + o(\frac{1}{n^{2\alpha}})$. Ces deux séries de terme général v_n et w_n convergent si et seulement si $2\alpha > 1$, donc la série de terme général u_n converge si et seulement si $\alpha > 1/2$.

Exercice n° 7

Soit $Y = (y_1, ..., y_n)$ un n-uplet de nombres réels positifs.

1. Le $\underset{\alpha \in \mathbb{R}}{Min} \sum_{i=1}^{n} (y_i - \alpha)^2$ est atteint pour $\alpha = \frac{1}{n} \sum_{i=1}^{n} y_i$ (il suffit d'annuler la dérivée de cette fonction convexe). La valeur du minimum est égale à $\underset{i=1}{\overset{n}{\sum}} y_i^2 - n\overline{Y}^2$, où \overline{Y} est la moyenne des éléments du n-uplet.

2. Soit $X = (x_1,...,x_n)$ un autre n-uplet de valeurs positives réelles, trouver le nombre réel a solution du problème de minimisation suivant :

$$\underset{a \in R}{Min} \sum_{i=1}^{n} (y_i - ax_i)^2 \text{ . On pose } f(a) = \sum_{i=1}^{n} (y_i - ax_i)^2 \text{ , on obtient}$$

 $f'(a) = -2\sum_{i=1}^{n} x_i(y_i - ax_i)$ et la dérivée de cette fonction convexe s'annule pour

$$a = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}.$$

- 3. Montrer que $\left(\sum_{i=1}^n x_i y_i\right)^2 \le \left(\sum_{i=1}^n x_i^2\right) \times \left(\sum_{i=1}^n y_i^2\right)$. Pour tout réel $\lambda > 0$, $\sum_{i=1}^n (x_i \lambda y_i)^2 \ge 0$ et donc le discriminant de cette inéquation du second degré est toujours négatif, ce qui donne l'inégalité recherchée.
- 4. Soit $f(\alpha) = \sum_{i=1}^{n} (y_i \alpha)^4$, $f'(\alpha) = -4\sum_{i=1}^{n} (y_i \alpha)^3$, $f''(\alpha) = 12\sum_{i=1}^{n} (y_i \alpha)^2$. La fonction f est donc strictement convexe et il existe une unique solution au problème de minimisation. L'étude de l'équation $f'(\alpha) = 0$ (regarder le sens de variation de f et utiliser la question 3), montre d'après le théorème des valeurs intermédiaires, que la solution est strictement positive.