ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN

AVRIL 2003

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE

OPTION MATHEMATIQUES

PREMIERE EPREUVE DE MATHEMATIQUES

DUREE: 4 HEURES

Les résultats seront encadrés. Soit n un entier naturel non nul. On pose

$$lpha_n = e^{rac{2i\pi}{n}} ext{ et } G_n = \sum_{k=0}^{n-1} lpha_n^{(k^2)}.$$

- 1. Calculer G_1 , G_2 , G_3 , G_4 . Calculer pour tout $r \in \mathbb{Z}$, $H_r = \sum_{k=0}^{n-1} \alpha_n^{kr}$.
- 2. Décomposer en facteurs irréductibles sur \mathbb{C} , puis sur \mathbb{R} , le polynôme X^5-1 .
- 3. En déduire la valeur de $\cos(\frac{2\pi}{5})$ et $\cos(\frac{4\pi}{5})$ en fonction de $\sqrt{5}$. Calculer G_5 .
- 4. On considère la matrice $A_n \in M_{n,n}(\mathbb{C})$ définie par

$$A_{n} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha_{n} & \alpha_{n}^{2} & \cdots & \alpha_{n}^{n-1} \\ 1 & \alpha_{n}^{2} & (\alpha_{n}^{2})^{2} & \cdots & (\alpha_{n}^{2})^{n-1} \\ & & \ddots & & & \\ 1 & \alpha_{n}^{n-1} & (\alpha_{n}^{n-1})^{2} & \cdots & (\alpha_{n}^{n-1})^{n-1} \end{pmatrix}$$

Vérifier que $\operatorname{Tr} A_n = G_n$ (Tr désigne la trace de la matrice) et que $A_n^2 = nB_n$ avec $B_n = (b_s^r)$ définie par $b_s^r = 1$ si r+s=2 ou r+s=n+2, sinon $b_s^r = 0$. Montrer que $B_n^2 = I_n$.

5. Montrer que si λ est valeur propre de A_n alors λ^p est une valeur propre de A^p , pour tout $p \in \mathbb{N}^*$. En déduire que A_n admet au plus quatre valeurs propres distinctes. Indiquer leurs valeurs possibles.

6. Soit $U \in M_{n,n}(\mathbb{C})$ telle que $U^2 = I_n$. Si u est l'endomorphisme de \mathbb{C}^n ayant U pour matrice dans la base canonique de \mathbb{C}^n établir

$$\mathbb{C}^n = \ker(u - Id) \oplus \ker(u + Id).$$

En déduire que U est diagonalisable. Montrer que B_n est diagonalisable.

- 7. On suppose dans cette question n=2p+1 $(p \in \mathbb{N})$. Si v est l'endomorphisme de \mathbb{C}^n ayant pour matrice B_n dans la base canonique (e_1,e_2,\cdots,e_n) de \mathbb{C}^n , déterminer en fonction des vecteurs e_i une base de vecteurs propres de v et montrer que 1 et -1 sont respectivement valeurs propres de B_n d'ordre, respectivement , p+1 et p. Quel est le polynôme caractéristique de B_n ?
- 8. Soit P un polynome de degré d de la forme $P(X) = (X-a_1)(X-a_2)\cdots(X-a_d)$ avec pour tout $i \neq j$, $a_i \neq a_j$. Notons Q le polynôme tel que $P(X) = (X-a_1)Q(X)$. Montrer que Q(X) et $(X-a_1)$ sont premiers entre eux. Soit E un espace vectoriel de dimension finie sur \mathbb{C} . Soit w un endomorphisme de E tel que P(w) = 0. Montrer que

$$E = \ker(w - a_1 Id) \oplus \ker Q(w)$$
. From Esquira Com

En déduire que

$$E = \ker(w - a_1 Id) \oplus \ker(w - a_2 Id) \oplus \cdots \oplus \ker(w - a_d Id).$$

En déduire que w est diagonalisable.

9. Montrer que A_n est semblable à une matrice diagonale du type

$$D_n = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & \cdots & & \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

avec $\lambda_k \in {\sqrt{n}, -\sqrt{n}, i\sqrt{n}, -i\sqrt{n}}$ pour tout $k \in {1, \dots, n}$.

- 10. On suppose que n=2p+1 avec $p\in\mathbb{N}$. On désigne par a,b,c,d le nombre de fois où les quatre valeurs $\sqrt{n},-\sqrt{n},i\sqrt{n},-i\sqrt{n}$ sont respectivement écrites dans la matrice D_n . Montrer que a+b=p+1 et c+d=p.
- 11. Soit $T = \{0, 1, \dots, n-1\}$. Montrer que l'on définit une bijection ϕ de $T \times T$ sur $T \times T$ par $\phi(k, s) = (k s, s)$ si $k \geq s$ et $\phi(k, s) = (k + n s, s)$ si k < s. En déduire que $G_n \overline{G}_n = \sum_{(r,s) \in T \times T} \alpha_n^{(r+s)^2 s^2}$. Prouver que si n est impair alors $|G_n| = \sqrt{n}$.
- 12. En déduire que les coefficients de la question 8) vérifient $(a-b)^2+(c-d)^2=1$ si n est impair.

- 13. On suppose que n=2p+1 avec $p\in\mathbb{N}$. Montrer en calculant $\det A_n$ que $\lambda_1\lambda_2\cdots\lambda_n=i^{p(2p+1)}n^{\frac{n}{2}}$.
- 14. On suppose que n=2p+1 avec $p\in\mathbb{N}$. Déduire de la question précédente qu'il existe $m\in\mathbb{Z}$ tel que b+d=p+2m. Calculer les valeurs de $a,\,b,\,c,\,d$.
- 15. En déduire la valeur de $\operatorname{Tr} A_n$ pour n impair.