Avril 2006

CONCOURS INGÉNIEURS STATISTICIEN ÉCONOMISTE

ISE Option Mathématiques

Corrigé de la 1ère COMPOSITION DE MATHÉMATIQUES

 \mathbb{N}_n désigne $\{1, \dots, n\}$, $n \in \mathbb{N}^*$.

Partie I

1. $|| ||_{\infty}$ est bien définie et à valeurs dans \mathbb{R}_+ car

$$\frac{||Ax||}{||x||} = \left| \left| A\left(\frac{x}{||x||}\right) \right| \right|$$

montre que les ensembles $\left\{\frac{||Ax||}{||x||}, x \in \mathbb{C} \setminus \{0\}\right\}$ et $\{||Ay||, y \in S^{n-1}\}$ où $S^{n-1} = \{0, 1\}$

 $\{y \in \mathbb{C}^n/||y|| = 1\}$ est la sphère unité, sont égaux. Comme S^{n-1} est un compact de \mathbb{C}^n et comme l'application $y \longmapsto ||Ay||$ est continue à valeurs dans \mathbb{R}_+ , elle atteint son maximum en un point z de S^{n-1} , autrement dit, il existe $z \in S^{n-1}$ tel que

$$||Az|| = \max_{y \in S^{n-1}} ||Ay|| = \max_{x \neq 0} \left(\frac{||Ax||}{||x||} \right).$$

On constate que si $x \neq 0$,

$$||Ax|| = \frac{||Ax||}{||x||} ||x|| \le ||A||_{\infty} ||x||.$$

L'inégalité étant triviale pour x=0, on peut écrire

$$\forall x \in \mathbb{C}^n, \quad ||Ax|| \le ||A||_{\infty} ||x||.$$

On vérifie ensuite que || || $_{\infty}$ satisfait les trois axiomes d'une norme :

- a) $||A||_{\infty} = 0 \Longrightarrow \forall x \in \mathbb{C}^n$, $||Ax|| = 0 \Longrightarrow \forall x \in \mathbb{C}^n$, $Ax = 0 \Longrightarrow A = 0$.
- b) Pour tout $A, B \in \mathcal{M}_n(\mathbb{C})$ et pour tout $x \neq 0$,

$$\frac{||Ax + Bx||}{||x||} \le \frac{||Ax||}{||x||} + \frac{||Bx||}{||x||} \le ||A||_{\infty} + ||B||_{\infty}$$

et en passant à la borne supérieure dans cette inégalité pour $x \in \mathbb{C}^n \setminus \{0\}$, $||A+B||_{\infty} \leq ||A||_{\infty} + ||B||_{\infty}$.

c) pour tout $A \in \mathcal{M}_n(\mathbb{C})$, pour tout $\lambda \in \mathbb{C}$ et $x \neq 0$,

$$\frac{||\lambda Ax||}{||x||} = |\lambda| \frac{||Ax||}{||x||}$$

et en passant supérieure dans cette inégalité pour $x \in \mathbb{C}^n \setminus \{0\}$, on obtient $||\lambda A||_{\infty} = |\lambda|||A||_{\infty}$.

2. $||A||_{\infty} = \max_{||x||=1} ||Ax|| = \max_{||x||=1} \left(\max_{i} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \right)$. Pour tout $x \in S^{n-1}$ et tout $i \in \mathbb{N}_{n}$

$$\left| \sum_{j=1}^{n} a_{ij} x_j \right| \le \sum_{j=1}^{n} |a_{ij}| \quad \text{donc} \quad ||A||_{\infty} \le \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right).$$

D'autre part, si $i_0 \in \mathbb{N}_n$ désigne l'indice tel que

$$\max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) = \left(\sum_{j=1}^{n} |a_{i_0j}| \right),$$

posons $x = \left(\frac{\overline{a_{i_01}}}{|a_{i_01}|}, \cdots, \frac{\overline{a_{i_0n}}}{|a_{i_0n}|}\right) \in S^{n-1}$ en prenant comme convention de remplacer $\frac{\overline{a_{i_0j}}}{|a_{i_0j}|}$ par 0 si $a_{i_0j} = 0$. Alors

$$||A||_{\infty} \ge ||Ax|| = \max_{i} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \ge \left| \sum_{j=1}^{n} a_{i_{0}j} x_{j} \right| = \sum_{j=1}^{n} |a_{i_{0}j}| = \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right),$$

et l'on peut conclure à l'égalité demandée.

3. On utilise deux fois la propriété

$$\forall x \in \mathbb{C}^n \quad \forall A \in \mathcal{M}_n(\mathbb{C}) \quad ||Ax|| \le ||A||_{\infty}$$

qui provient directement, on l'a vu, de la définition de la norme $|| \ ||_{\infty}$. On trouve

$$\forall x \in \mathbb{C}^n \quad ||ABx|| \le ||A||_{\infty} ||Bx|| \le ||A||_{\infty} ||B||_{\infty} ||x||,$$

on en déduit

$$\forall x \in \mathbb{C}^n \quad \frac{||ABx||}{||x||} \le ||A||_{\infty} ||B||_{\infty},$$

et en passant au sup dans cette inégalité, $||AB||_{\infty} \leq ||A||_{\infty} ||B||_{\infty}$.

Partie II

1. $|A+B| \leq |A| + |B|$, est triviale par l'inégalité triangulaire appliquée à chacun des coefficients. Posons $A = (a_{ij}), B = (b_{ij}), AB = (c_{ij})$ et $|A| \cdot |B| = (d_{ij})$. On a

$$|c_{ij}| = \left|\sum_{k=1}^{n} a_{ik} b_{kj}\right| \le \sum_{k=1}^{n} |a_{ik} b_{kj}| = |d_{ij}|$$

de sorte que $|AB| \le |A|.|B|$ et en appliquant l'inégalité avec B = x on obteint $|Ax| \le |A||x|$.

- 2. Si A est une matrice strictement positive et x est un vecteur positif non nul alors les coefficients de Ax sont $y_i = \sum_{k=1}^n a_{ik} x_k$ et il existe $k_0 \in \mathbb{N}_n$ tel que $x_{k_0} > 0$. Comme $a_{ik} > 0$ et $x_k \ge 0$ pour tout k, on en déduit $y_i > 0$ d'où Ax > 0.
- 3. Montrons la contraposée : si $A \neq 0$, il existe i, j tels que $a_{ij} \neq 0$. Si Ax = y,

$$y_i = \sum_{k=1}^n a_{ik} x_k \ge a_{ij} x_j > 0.$$

ce qui entraine $Ax \neq 0$.

4. En élevant au carré on obtient

$$|z + z'| = |z| + |z'| \iff 2\Re \left(z\overline{z'} \right) = 2|zz'| \iff z\overline{z} \in \mathbb{R}_+$$

$$\iff z'\overline{z} = r \in \mathbb{R}_+$$

$$\iff z' = \frac{r}{|z|^2}z$$

$$\iff \exists \alpha \in \mathbb{R}_+, z' = \alpha z.$$

5. Pour n complexes z_k , les inégalités triangulaires

$$|z_1 + z_2 + \dots + z_n| \le |z_1 + z_k| + |z_2| + \dots + |z_n| \le |z_1| + |z_k| + |z_2| + \dots + |z_n|$$

entraînent, si les extrémités sont identiques

$$|z_1 + z_k| = |z_1| + |z_k|$$

et d'après ce que l'on vient de voir, $z_k = \alpha_k z_1$ avec $\alpha_k \in \mathbb{R}_+$. Cela implique $z_k = |z_k|e^{i\theta}$ où $\theta = \arg(z_1)$, pour tout $k \in \mathbb{N}_n$.

6. Soit A une matrice strictement positive et $x \in \mathbb{C}^n$. Montrons que

$$|Ax| = |A||x| \Longrightarrow \exists \theta \in \mathbb{R}, \ x = e^{i\theta}|x|.$$

On a

$$|Ax| = A|x| \Longleftrightarrow \forall l \in \mathbb{N}_n \qquad \left| \sum_{k=1}^n a_{lk} x_k \right| = \sum_{k=1}^n a_{lk} |x_k| = \sum_{k=1}^n |a_{lk} x_k|$$

 $z_k = a_{lk}x_k$, on trouve $|\sum_{k=1}^n z_k| = \sum_{k=1}^n |z_k|$ et la question précédente montre l'existence d'un réel θ_l tel que pour tout k, $z_k = |z_k|e^{i\theta_l}$. En faite θ_k est indépendante de l puisque c'est l'argument de $z_k = a_{lk}x_k$ et $a_{lk} > 0$. Donc $a_{ik}x_k = |a_{ik}x_k|e^{i\theta}$ et a_{ik} étant strictement positif,

$$\forall k \in \mathbb{N}_n \qquad x_k = |x_k|e^{i\theta}$$

ce qui traduit $x = |x|e^{i\theta}$.

Partie III

1. Un calcul élémentaire donne que les valeurs propres de la matrice

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}, a, b, c \in \mathbb{R}, a^2 \neq c^2, \text{ sont } \frac{a+c-\sqrt{(a-c)^2+4b^2}}{2} \text{ et } \frac{a+c+\sqrt{(a-c)^2+4b^2}}{2}.$$

Clairement le rayon spectral est $\frac{a+c+\sqrt{(a-c)^2+4b^2}}{2}$, puisque $a^2 \neq c^2$.

2. Notons Spec(A) le spectre de l'opérateur A. C'est par définition l'ensemble des valeurs propres de A. Si $\lambda \in Spec(A)$, il existe un vecteur

propre non nul $x \in \mathbb{C}^n$ tel que $Ax = \lambda x$. Notons $[c_1, \dots, c_n]$ la matrice de $\mathcal{M}_n(\mathbb{C})$ dont les colonnes c_1, c_2, \dots, c_n de \mathbb{C}^n . Si $X = [x, x, \dots, x]$,

$$AX = A[x, x, \cdots, x] = [\lambda x, \lambda x, \cdots, \lambda x] = \lambda X.$$

3. Si $\lambda \in Spec(A)$ avec les précédente notations,

$$||AX|| = |\lambda|||X|| \le ||A||||X|| \Longrightarrow |\lambda| \le ||A||.$$

Comme $\rho(A) = \max_{\lambda \in Spec(A)} |\lambda|$, on déduit $\rho(A) \le ||A||$.

4. Les polynômes caratéristique de A et $S^{-1}AS$ sont les mêmes puisque

$$\det(XI - A) = \det(S^{-1}(XI - A)S) = \det(XI - S^{-1}AS),$$

de sorte que $Spec(A) = Spec(S^{-1}AS)$ et $\rho(A) = \rho(S^{-1}AS)$.

5. Montrons que, pour tout $k \in \mathbb{N}^*$, on a $\rho(A^k) = [\rho(A)]^k$. En effet A est trigonalisable car le polynôme caractéristique est scindé dans \mathbb{C} , il existe, donc, une matrice inversible S tel que $T = S^{-1}AS$ est triangulaire supérieure

$$T = S^{-1}AS = \begin{pmatrix} t_1 & * & * & * \\ & \ddots & * & * \\ O & & \ddots & * \\ & & & t_n \end{pmatrix}$$

On a

$$T^{k} = S^{-1}A^{k}S = \begin{pmatrix} t_{1}^{k} & * & * & * \\ & \ddots & * & * \\ O & & \ddots & * \\ & & & t_{n}^{k} \end{pmatrix}$$

de sorte que $\rho(T) = \rho(A)$ et $\rho(T^k) = \rho(A^k)$. Les valeurs propres des matrices triangulaires T et T^k sont situées dans la diagonale principale, donc

$$Spec(T) = \{t_1, \dots, t_n\}$$
 et $Spec(T^k) = \{t_1^k, \dots, t_n^k\}$

et

$$\rho(T^k) = \max_{i \in \mathbb{N}_n} |t_i^k| = \left(\max_{i \in \mathbb{N}_n} |t_i|\right)^k = \rho(T)^k.$$

On obtient bien $\rho(A^k) = \rho(A)^k$. Il résulte que $\rho(A)^k = \rho(A^k) \le ||A^k||$, donc $\rho(A) \le ||A^k||^{\frac{1}{k}}$.

6. On vérifie sans peine que l'application $N: A \mapsto ||S^{-1}AS||$ est une norme sur $\mathcal{M}_n(\mathbb{C})$. Elle est sous-multiplicative car $||\cdot||$ l'est. En effet

$$N(AB) = \left| \left| S^{-1}ABS \right| \right| = \left| \left| S^{-1}ASS^{-1}BS \right| \right| \le \left| \left| S^{-1}AS \right| \right| \left| \left| \left| S^{-1}BS \right| \right| = N(A)N(B).$$

7. Un Calcul élémentaire permet d'écrire que $(\Delta^{-1}T\Delta)_{ij} = t_{ij}d^{j-i}$. Soit S une matrice inversible telle que $T = S^{-1}AS$. Supposons que T soit triangulaire supérieure. Alors $t_{ij} = 0$ pour tout i > j. Par la question précédente $N(X) = \left| \left| (S\Delta)^{-1}XS\Delta \right| \right|_{\infty}$ est une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$ et

$$N(A) = \left\| \left(\Delta \right)^{-1} T \Delta \right\|_{\infty} = \max_{i \in \mathbb{N}_n} \left(\sum_{j=1}^n |t_{ij} d^{j-i}| \right).$$

En prenant $d \in]0,1[$ et en posant $t = \max_{i,j \in \mathbb{N}_n} (|t_{ij}|, \text{ on trouve})$

$$N(A) = \max_{i \in \mathbb{N}_n} \left(\sum_{j=1}^n |t_{ij}d^{j-i}| \right)$$

avec

$$\sum_{j=i}^{n} |t_{ij}| d^{j-i} = |t_{ii}| + \sum_{j=i+1}^{n} |t_{ij}| d^{j-i} \le \rho(A) + \tau \sum_{j=i}^{n} d^{j-i} = \rho(A) + \tau \frac{d}{d-1}.$$

Comme $\lim_{d\longrightarrow 0} \tau \frac{d}{d-1}=0$, si $\varepsilon>0$ est donné à l'avance, on peut choisir $d\in]0,1[$ tel que $\tau \frac{d}{d-1}<\varepsilon$ et l'on obtient bien

$$N(A) \le \rho(A) + \varepsilon.$$

8. La question précédente combinée avec la sous-multiplicative de N permettent d'écrire

$$N(A^k) \le N(A)^k \le (\rho(A) + \varepsilon)^k$$
.

Comme $\rho(A) < 1$, on peut choisir $\varepsilon > 0$ tel que $\rho(A) + \varepsilon < 1$, de sorte que $\lim_{k \longrightarrow +\infty} (\rho(A) + \varepsilon)^k = 0$ et donc $\lim_{k \longrightarrow +\infty} N(A^k) = 0$. La suite $(A^k)_{k \in \mathbb{N}}$ converge

vers 0 pour la norme N or tout les normes sont équivalentes sur un espace de dimension finie il résulte que $\lim_{k \longrightarrow +\infty} A^k = 0$.

9. Considérons la matrice $A_{\varepsilon} = \frac{A}{\rho(A) + \varepsilon}$, $\varepsilon > 0$. Il vient

$$\rho(A) = \frac{\rho(A)}{\rho(A) + \varepsilon} < 1$$

et par ce qui précéde $\lim_{k\longrightarrow +\infty}A^k_\varepsilon=0$. On en déduit qu'il existe $k_0\in\mathbb{N}^*$ tel que si $k>k_0$ on ait

$$\left|\left|A_{\varepsilon}^{k}\right|\right| \leq 1 \Longrightarrow \left|\left|A^{k}\right|\right| \leq (\rho(A) + \varepsilon)^{k}$$

On en déduit

$$k \ge k_0 \Longrightarrow \rho(A) \le \left| \left| A^k \right| \right|^{\frac{1}{k}} \le \rho(A) + \varepsilon$$

pour tout $\varepsilon > 0$, i.e. $\lim_{k \to +\infty} \left| \left| A^k \right| \right|^{\frac{1}{k}} = \rho(A)$.

Partie IV

1. L'ensemble Λ est évidement majoré (par exemple par la somme des éléments de A) et par définition de λ_0 , il existe (X_m) de \mathcal{S} et (α_m) de Λ telle que

$$\lim_{m \to \infty} \alpha_m = \lambda_0 \text{ et } \forall m, AX_m \ge \alpha_m X_m.$$

L'ensemble S est un fermé borné de \mathbb{R}^n donc compact de sorte que l'on peut extraire de la suite (X_m) une sous-suite convergente (X_{m_l}) . Notons $X \in S$ sa limite. Comme $AX_{m_l} \geq \alpha_{m_l}X_{m_l}$, par passage à la limite on obtient $AX \geq \lambda_0 X$. Si $AX \neq \lambda_0 X$, on a $AX > \lambda_0 X$. En composant par A à gauche, on obtient, du fait que A > [0], l'inégalité $AY > \lambda_0 Y$, où Y = AX. Il existe donc $\varepsilon > 0$ suffisament petit tel que $AY \geq (\lambda_0 + \varepsilon)Y$, ce qui contredit la définition de λ_0 car quitte à multiplier Y par une constante positive non nulle, on peut supposer $Y \in S$.

Ainsi $AX = \lambda_0 X$ avec $X \in \mathcal{S}$ or A > [0] entraı̂ne AX > 0 donc $\lambda_0 X > 0$ on en déduit X > 0.

2. Supposons que $\lambda \neq \lambda_0$ est une autre valeur propre de A et notons $Z = (z_i)$ un vecteur propre associé. On a

$$\forall i \in \mathbb{N}_n, \quad \sum_{j=1}^n a_{ij} z_j = \lambda z_i$$

donc

$$\forall i \in \mathbb{N}_n, \quad \sum_{j=1}^n a_{ij}|z_j| \ge |\lambda||z_i|$$

i.e. $A|Z| \geq |\lambda||Z|$. On en déduit que $|\lambda| \in \Lambda$ car quite à multiplier |Z| par une constante on peut toujours supposer que $|Z| \in \mathcal{S}$. Donc $|\lambda| \leq \lambda_0$. Il reste montrer que le cas d'égalité n'a pas lieu. Supposons que $\lambda = \lambda_0$. Comme A > [0] il existe $\delta > 0$ suffisament petit tel que $A_{\delta} = A - \delta I_n \geq [0]$. Comme λ_0 est la plus grande valeur propre réelle positive de $A, \lambda_0 - \delta$ est la plus grande valeur propre réelle positive de A_{δ} . En répétant l'argument précédent à la matrice A_{δ} et à la valeur propre $\lambda - \delta$, on obtient $|\lambda - \delta| \leq \lambda_0 - \delta$. Mais

$$\lambda_0 = |\lambda| = |\lambda - \delta + \delta| \le |\lambda - \delta| + \delta \le \lambda_0,$$

de sorte que $|\lambda| = |\lambda - \delta| + \delta$, ce qui n'est possible que si λ est un réel positif. Donc $\lambda = |\lambda| = \lambda_0$, ce qui contredit que $\lambda \neq \lambda_0$. Donc $|\lambda| < \lambda_0$.

3. On sait qu'il existe un vecteur propre $X \geq 0$ tel que $X \in E_{\lambda_0}$. Supposons que $\dim(E_{\lambda_0}) \geq 2$, de sorte qu'il existe $Y \in E_{\lambda_0}$ tel que (X,Y) est une famille libre. Il existe μ tel que $X - \mu Y \geq 0$ (on peut prendre $\mu = \inf\left\{\frac{x_i}{|y_i|}, y_i \neq 0\right\}$). Comme A > [0] on a $AX - \mu AY > 0$, i.e. $\lambda_0 (X - \mu Y)) > 0$, ce qui contredit le choix de μ . D'où le résultat.