ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA-ABIDJAN

INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA-YAOUNDÉ

ÉCOLE NATIONALE DE LA STATISTIQUE ET D'ANALYSE ÉCONOMIQUE ENSAE-SÉNÉGAL

AVRIL 2009

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

1ère COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 4 heures)

Les résultats seront encadrés.

Pour tout entier $p \geq 1$, on désigne par \mathcal{M}_p l'espace vectoriel des matrices réelles à p lignes et p colonnes. Si $M \in \mathcal{M}_p$, on note \underline{M} l'endomorphisme de \mathbb{R}^p de la matrice M dans la base canonique. La transposée d'une matrice M est notée tM. Le produit scalaire usuel sur \mathbb{R}^n est désigné par < .,. >. La norme euclidienne est notée par $|| \ ||$. Finalement, pour tout endomorphisme η , on désigne par η^* son adjoint défini par

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \qquad <\eta(x), y> = < x, \eta^*(y) > .$$

Partie I

Soit n un entier ≥ 1 . On appelle forme symplectique sur \mathbb{R}^n une application ω : $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ qui est

- Bilinéaire : Pour tout $y \in \mathbb{R}^n$ fixé, l'application $x \longmapsto \omega(x,y)$ est linéaire et pour tout $x \in \mathbb{R}^n$ fixé, l'application $y \longmapsto \omega(x,y)$ est linéaire.
- Antisymétrique : Pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$, $\omega(x,y) = -\omega(y,x)$.
- Non-dégénérée : Le seul vecteur x qui vérifie $\omega(x,y)=0$, pour tout $y\in\mathbb{R}^n$ est le vecteur nul.
- a. Soit η un endomorphisme de \mathbb{R}^n tel que $\eta^* = -\eta$. On pose

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \qquad \omega(x,y) = <\eta(x), y>. \tag{1}$$

Montrer que ω est une forme symplectique sur \mathbb{R}^n si et seulement si η est inversible.

- b. Soit ω une forme symplectique sur \mathbb{R}^n . Montrer qu'il existe un endomorphisme η de \mathbb{R}^n tel que la relation (1) soit vérifée. Montrer que $\eta^* = -\eta$ et que η est inversible.
- c. Montrer que s'il existe sur \mathbb{R}^n une forme symplectique, alors n est pair.
- d. On suppose dans cette question que n=2m. On pose

$$\forall x, y \in \mathbb{R}^{2m}, \qquad \omega_0(x, y) = \langle \underline{J}x, y \rangle$$

où J est la matrice donnée par

$$J = \left(\begin{array}{cc} 0_m & -I_m \\ I_m & 0_m \end{array}\right)$$

 I_m étant la matrice unité.

- 1) Montrer que ω_0 est une forme symplectique sur \mathbb{R}^{2m} .
- 2) Soit $(e_k)_{1 \le k \le 2m}$ la base canonique de \mathbb{R}^{2m} . Calculer $\omega_0(e_k, e_l), 1 \le k \le 2m, 1 \le l \le 2m$.

Partie II

On fixe l'entier pair n=2m. On appelle matrice symplectique toute matrice $M\in\mathcal{M}_n$ telle que

$$^{t}MJM = J.$$

- 1. Que peut-on dire du déterminant d'une matrice symplectique?
- 2. L'ensemble des matrices symplectiques est-il un groupe pour la multiplication?
- 3. La matrice J est-elle symplectique?
- 4. La transposée d'une matrice symplectique est-elle symplectique?
- 5. On écrit toute matrice $M \in \mathcal{M}_n$ par blocs, $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ où $A, B, C, D \in \mathcal{M}_m$.
 - (a) Montrer que la matrice M est symplectique si et seulement si les matrices A, B, C, D vérifient les conditions

$$\left\{ \begin{array}{ll} {}^tAC \ \ {\rm et} \ \ {}^tBD \ \ {\rm sont} \ \ {\rm sym\acute{e}triques} \\ {}^tAD - {}^tCB = I_m \end{array} \right.$$

(b) Montrer que si D est inversible, il existe $Q \in \mathcal{M}_m$ telle que

$$M = \left(\begin{array}{cc} I_m & Q \\ 0 & I_m \end{array}\right) \left(\begin{array}{cc} A - QC & 0 \\ C & D \end{array}\right)$$

Partie III

Soit M une matrice symplectique et soit P son polynôme caractéristique.

- 1. Montrer que, $\forall \lambda \in \mathbb{C} \setminus \{0\}$, $P(\lambda) = \lambda^{2m} P\left(\frac{1}{\lambda}\right)$.
- 2. Montrer que si $\lambda_0 \in \mathbb{C}$ est une valeur propre de M, de multiplicité d, alors $\frac{1}{\lambda_0}, \overline{\lambda_0}, \frac{1}{\overline{\lambda_0}}$ sont des valeurs propres de M, chacune de multiplicité d.
- 3. Que peut-on dire de l'ordre de multiplicité de -1 et 1?
- 4. Donner des exemples de matrices symplectiques $\in \mathcal{M}_4$, diagonalisables sur \mathbb{C} et ayant
 - (a) une seule valeur propre;
 - (b) deux valeurs propres doubles distinctes;
 - (c) une valeur propre double et deux valeurs propres simples ;
 - (d) quatre valeurs propres distinctes non réelles et de module $\neq 1$.

Docs à portée de main

Partie IV

Soient ϕ un endomorphisme de \mathbb{R}^{2m} et M sa matrice dans la base canonique.

- 1. Montrer que les propriétés suivantes sont équivalentes :
 - (i) $\forall x, y \in \mathbb{R}^{2m}$, $\omega_0(\phi(x), \phi(y)) = \omega_0(x, y)$,
- (ii) la matrice M est symplectique.

Un endomorphisme ϕ de \mathbb{R}^{2m} qui vérifie la propriété (i) ci-dessus est appelé endomorphisme symplectique.

Un endomorphisme ψ de \mathbb{R}^n est dit *stable* si, pour tout $x \in \mathbb{R}^n$, la suite $(||\psi^p(x)||)_{p \in \mathbb{N}}$ est bornée, où ψ^p désigne la composée de l'application ψ avec elle-même p fois.

- 2. Montrer que si un endomorphisme ϕ de \mathbb{R}^n a toutes ses valeurs propres distinctes et de module 1 dans \mathbb{C} , alors ϕ est stable.
- 3. a) Donner une condition nécessaire et suffisante sur $\Omega \in \mathcal{M}_m$ pour que l'endomorphisme de \mathbb{R}^{2m} de matrice $\begin{pmatrix} 0 & -\Omega \\ \Omega & 0 \end{pmatrix}$ dans la base canonique soit symplectique et stable.
- b) Montrer que si un endomorphisme symplectique ϕ de \mathbb{R}^{2m} possède une valeur propre dans \mathbb{C} de module $\neq 1$, alors ϕ n'est pas stable.
- 4. On note x_1, \dots, x_{2m} les coordonnées de $x \in \mathbb{R}^{2m}$ dans la base canonique. On considère les ensembles

$$B \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^{2m} : \sum_{k=1}^{2m} x_k^2 \le 1 \right\},\,$$

3

$$C_R \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^{2m} : x_1^2 + x_2^2 \le R^2 \}$$

 et

 $\Gamma_R \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^{2m} \ : \ x_1^2 + x_{m+1}^2 \leq R^2 \right\}, R \text{ \'etant un r\'eel strictement positif.}$

- 4. a) On suppose $m \geq 2$. Montrer que pour tout R > 0, il existe un endomorphisme symplectique ϕ de \mathbb{R}^{2m} tel que $\phi(B) \subset C_R$.
- b) Soit ϕ un endomorphisme symplectique de \mathbb{R}^{2m} et soit ϕ^* l'adjoint de ϕ par rapport au produit scalaire euclidien. Montrer que ou bien $||\phi^*(e_1)|| \geq 1$, ou bien $||\phi^*(e_{m+1})|| \geq 1$.
- c) En déduire que, si R<1, il n'existe aucun endomorphisme symplectique ϕ de \mathbb{R}^{2m} tel que $\phi(B)\subset \Gamma_R$.

