CONCOURS D'ELEVE INGENIEUR DES TRAVAUX STATISTIQUES

VOIE A

CORRIGE DE L'EPREUVE DE CALCUL NUMERIQUE

••

* *

EXERCICE n° 1

1 $p_{1a} = 0.8538$.

②
$$p_{1b} = (0.8538)^5 = 0.4537$$
.

② ① $p_{2a} = (0.8538)^{30} = 8.723 \cdot 10^{-3}$.

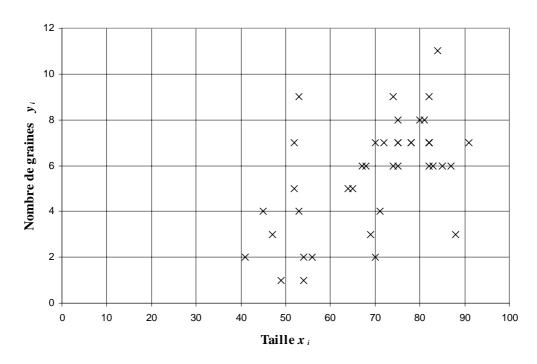
②
$$p_{2b} = 30 \times (0.8538)^{29} \times (0.1226 + 0.0236) = 4.481 \cdot 10^{-2}$$
.

①
$$\pi = \frac{P(A) - P(A \cap B)}{1 - P(B)} = \frac{0.2 - 0.25 \times p}{1 - p}$$
.

②
$$\pi \le 0.1 \Leftrightarrow p \ge \frac{2}{3}$$
 donc $p=0.6667$.

3 La probabilité cherchée est la somme des probabilités d'avoir décontaminé 20, 21, 22, 23, 24 ou 25 parcelles, soit :

$$\begin{aligned} p_{3c} &= \mathbf{C}_{25}^{5} \left(\frac{1}{3}\right)^{20} \left(\frac{2}{3}\right)^{5} + \mathbf{C}_{25}^{4} \left(\frac{1}{3}\right)^{21} \left(\frac{2}{3}\right)^{4} + \mathbf{C}_{25}^{3} \left(\frac{1}{3}\right)^{22} \left(\frac{2}{3}\right)^{3} + \mathbf{C}_{25}^{2} \left(\frac{1}{3}\right)^{23} \left(\frac{2}{3}\right)^{2} + \mathbf{C}_{25}^{1} \left(\frac{1}{3}\right)^{24} \frac{2}{3} + \left(\frac{1}{3}\right)^{25} \\ &= 2.269.10^{-6} \end{aligned}$$


EXERCICE n° 2

0

	Taille	Nombre de
		graines
Minimum	41	1
Maximum	91	11
Moyenne	69,58	5,65
Mode	82	7
Médiane	73	6
Ecart type	13,53	2,40

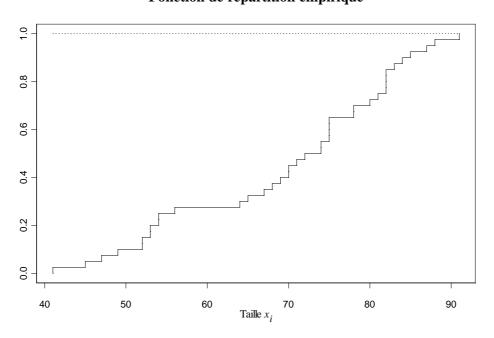
2

Nombre de graines en fonction de la taille

3 On remarque que le nombre de graines semble proportionnel à la taille des gousses, mais ce lien n'est pas déterministe, comme en témoigne la dispersion des points du graphique.

4

Taille des gousses


C1	E./	0/1/
Classes	Fréquence	% cumulé
45	2	5,0%
50	2	10,0%
55	6	25,0%
60	1	27,5%
65	2	32,5%
70	5	45,0%
75	8	65,0%
80	3	72,5%
85	8	92,5%
90	2	97,5%
95	1	100%

Nombre de graines

Classes	Fréquence	% cumulé
3	9	22,5%
6	14	57,5%
9	16	97,5%
12	1	100%

6

Fonction de répartition empirique

EXERCICE n° 3

Le système est symétrique en x et y: si (x,y) est solution alors (y,x) est solution.

On pose P = xy et S = x + y.

On est ramené au système :

$$\begin{cases} S^2 - 2P = 208 \\ P = 96 \end{cases}$$

soit

$$\begin{cases} S = 20 \\ P = 96 \end{cases} \text{ ou } \begin{cases} S = -20 \\ P = 96 \end{cases}.$$

On doit donc résoudre deux équations du second degré :

$$X^2 - 20X + 96 = 0$$
 et $X^2 + 20X + 96 = 0$.

La première admet comme racines 8 et 12, la seconde -8 et -12.

Le système a donc comme ensemble de solutions :

$$\big\{(8{,}12);(12{,}8);(-8{,}-12);(-12{,}-8)\big\}\,.$$