ECOLE NATIONALE D'ECONOMIE APPLIQUEE (ENEA) DEPARTEMENT DE STATISTIQUE BP 5084 DAKAR-SENEGAL INSTITUT SOUS REGIONAL DE STATISTIQUE ET D'ECONOMIE APPLIQUEE YAOUNDE-CAMEROUN

ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN

AVRIL 2002

CONCOURS D'ELEVE INGENIEUR DES TRAVAUX STATISTIQUES

VOIE A

CALCUL NUMERIQUE

DUREE: 2 HEURES

Problème : Dans un magasin de vente de cuisines équipées, on veut étudier la liaison entre le nombre x d'appels téléphoniques de personnes intéréssées par les cuisines (x est donné en centaines d'appels) et le chiffre d'affaires réalisé y (y est donné en 2000 Euros). Les résultats simplifiés sont présentés dans le tableau ci-dessous, où les n_{ij} représentent le nombre de semaines où le magasin a reçu x_i appels téléphoniques et a fait y_j de chiffre d'affaires.

	$y_1 = 1$	$y_2 = 3$	$y_3 = 4$	$y_4 = 5$
$x_1 = 2$	4	3	2	0
$x_2 = 3$	2	3	4	1
$x_3 = 6$	0	4	5	3
$x_4 = 7$	0	5	7	7

1 Tableau.

Fomesoutra.com

On définit les quantités :

Docs à portée de main

$$n_{.j} = \sum_{i=1}^{4} n_{ij}, \quad \forall j = 1, \dots, 4,$$

 $n_{i.} = \sum_{j=1}^{4} n_{ij}, \quad \forall i = 1, \dots, 4,$

et
$$n = \sum_{i=1}^{4} n_{i.}, \quad n \text{ est l'effectif total.}$$

- 1. Que représentent les quantités n_2 et $n_{.3}$?
- 2. Calculer $\tilde{n} = \sum_{j=1}^{4} n_{.j}$. En déduire une relation entre \tilde{n} et n.
- 3. Dresser un tableau en complétant celui qui est dans l'énoncé comme suit :
 - a. dans la sixième colonne, on calculera les quantités n_i pour tout $i=1,\ldots,4$; dans la septième colonne, on calculera les produits $x_i n_i$ pour tout $i=1,\ldots,4$; dans la huitième colonne, on calculera les produits $x_i^2 n_i$ pour tout $i=1,\ldots,4$; dans la neuvième colonne, on calculera les quantités $x_i \sum_{j=1}^4 n_{ij} y_j$ pour tout $i=1,\ldots,4$.
 - **b.** sur la sixième ligne, on calculera les quantités $n_{.j}$ pour tout $j=1,\ldots,4$; sur la septième ligne, on calculera les produits $y_j n_{.j}$ pour tout $j=1,\ldots,4$; sur la huitième ligne, on calculera les produits $y_j^2 n_{.j}$ pour tout $j=1,\ldots,4$; sur la neuvième ligne, on calculera les quantités $y_j \sum_{i=1}^4 n_{ij} x_i$ pour tout $j=1,\ldots,4$.

2 Moyenne, Variance, Covariance.

On définit les moyennes marginales $\bar{\bar{x}}$ et $\bar{\bar{y}}$ par :

$$\bar{\bar{x}} = \frac{1}{n} \sum_{i=1}^4 n_{i.} x_i,$$
 et
$$\bar{\bar{y}} = \frac{1}{n} \sum_{i=1}^4 n_{i.} y_j.$$

On définit les variances marginales V(x) et V(y) par :

$$V(x) = \frac{1}{n} \sum_{i=1}^{4} n_{i} x_{i}^{2} - \bar{\bar{x}}^{2},$$
et
$$V(y) = \frac{1}{n} \sum_{i=1}^{4} n_{.j} y_{j}^{2} - \bar{\bar{y}}^{2}.$$

On définit les écart-types marginaux de x et de y comme étant les racines carrés de V(x) et de V(y) respectivement.

On définit la covariance Cov(x, y) entre x et y par :

$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{4} \sum_{j=1}^{4} n_{ij} x_i y_j - \bar{\bar{x}} \bar{\bar{y}}.$$

A partir du tableau établi à la question 1.3.,

- 1. Calculer \bar{x} et \bar{y} . Quelle est la signification de ces deux quantités ?
- 2. Calculer les variances marginales V(x) et V(y). En déduire les écart-types marginaux de x et de y, exprimés avec leurs unités naturelles.
- 3. Calculer la covariance entre x et y.
- 4. Déduire de la question précédente le coefficient de corrélation linéaire r entre x et y défini par

$$r = \frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{V}(x)}\sqrt{\operatorname{V}(y)}}.$$

3 Droites d'ajustement.

On appelle droite d'ajustement de y en x, la droite D1 d'équation :

$$y = ax + b,$$

avec
$$a = \frac{\text{Cov}(x,y)}{\text{V}(x)}$$
 et $b = \bar{y} - a \bar{x}$.

On appelle droite d'ajustement de x en y, la droite D2 d'équation :

$$x = a'y + b',$$

avec
$$a' = \frac{\operatorname{Cov}(x,y)}{\operatorname{V}(y)}$$
 et $b' = \bar{x} - a' \bar{y}$.

- 1. Etablir les équations des droites d'ajustement D1 et D2.
- 2. Sur un même graphique et dans un même repère rectangulaire avec les x en abscisses et les y en ordonnées, tracer les droites D1 et D2. Représenter sur le graphique, le point $G = (\bar{x}, \bar{y})$.

Docs à portée de main

Exercice 1. : Un dé est truqué de façon à ce que les probabilités de chaque face soient proportionnelles à leur numéro, avec le même coefficient de proportionnalité pour toutes les faces.

- 1. On jette le dé une fois et on note X le numéro obtenu. Dresser un tableau dans lequel figureront sur la première ligne les valeurs possibles de X, et sur la seconde ligne les probabilités correspondantes.
- 2. Calculer l'espérance et la variance de X.
- 3. On jette le dé deux fois, et on note Y la somme des numéros obtenus. Dresser un tableau dans lequel figureront sur la première ligne les valeurs possibles de Y, et sur la seconde ligne les probabilités correspondantes.

Exercice 2. : Soit f la fonction définie sur $I\!\!R$ par :

$$f(x) = \begin{cases} x - \mathbf{E}(x) & \text{si} \quad 0 \le x \le 3, \\ 0 & \text{si} \quad x \in]-\infty, 0[\cup]3, +\infty[, \end{cases}$$

où E(x) désigne la partie entière de x.

- 1. Tracer le graphe de la fonction f.
- Docs à portée de main
- 2. Etudier la continuité de la fonction f en $x_0=0,\ x_1=1,\ x_2=2$ et $x_3=3.$