# ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN

## **AVRIL 1999**

# CONCOURS D'ELEVE INGENIEUR DES TRAVAUX STATISTIQUES

## **VOIE B**

#### **OPTION MATHEMATIQUES**

## **EPREUVE DE CALCUL NUMERIQUE**

**DUREE: 2 HEURES** 



# **EXERCICE** n° 1

Chaque jour, une machine outil produit de 0 à 10 pièces défectueuses. On suppose que les probabilités d'avoir 0, 1, ... ou 10 pièces défectueuses sont égales de sorte que si le nombre de pièces défectueuses est X, cette variable aléatoire suit la loi de probabilité suivante :

$$\forall k \in \{0, 1, \dots, 10\} \ \text{Prob}(X = k) = \frac{1}{11}$$

• Calculer l'espérance mathématique EX et la variance VX de cette variable aléatoire.

 $\mathbf{Q}$   $X_1$ , ...,  $X_n$  représentent le nombre de pièces défectueuses n jours consécutifs. On suppose que les  $X_i$  ont indépendantes. On note  $Z_n$  la variable aléatoire définie par :

$$Z_n = \frac{X_1 + \dots + X_n}{n}$$

Calculer l'espérance mathématique  $EZ_n$  et la variance  $VZ_n$  de cette variable aléatoire. Que représente cette quantité ?



**3** Appliquer l'inégalité de Bienaymé-Tchebychev pour majorer la probabilité suivante :

$$P_n = \text{Prob}\left(\left|Z_n - EZ_n\right| > \frac{1}{2}\right)$$

- **4** Déterminer  $n_0$  tel que pour tout  $n > n_0$  on ait certainement  $P_n < 0.01$ . Que représente cette quantité ?
- Soit W la variable aléatoire représentant le nombre de pièces défectueuses produites en deux jours. Quel est l'ensemble des valeurs que W est susceptible de prendre ? Quelle est sa loi de probabilité ? Calculer son espérance EW et tracer sa fonction de répartition.

# **EXERCICE** n° 2

Un marchand va de ville en ville, achetant des marchandises, les revendant à l'étape suivante. Cette revente se fait avec bénéfice, on suppose dans un premier temps que le prix de vente est le double du prix d'achat. A chaque étape, il doit débourser 12 F de frais.

• Fabriquer un exemple numérique montrant le déroulement du processus, en commençant de la manière suivante :

| avoir initial pour l'achat     | 15 F | (Opération 1) |
|--------------------------------|------|---------------|
| 2. doublement lors de la vente | 30 F |               |
| 3. après règlement des frais   | 18 F | (Opération 2) |
| 4. étape suivante              | 36 F |               |

Poursuivre le calcul et faire un graphique sur les dix premières opérations.

**2** Le marchand part de la ville A et va à la ville B où il réussit à doubler son capital ; il paie ensuite ses frais (12 F). Puis il va à la ville C où il réussit à doubler son capital ; il paie de nouveau les frais et revient à la ville A où il recommence l'opération (vente, paiement des frais). Il constate alors que sa bourse est vide. Quel était son capital initial ?



# 6 Généralisation

On note  $x_0$  l'avoir initial et  $x_t$  le capital à l'étape t, on suppose que chaque vente multiplie le capital par q, les frais sont constants égaux à c. (q > 1, c > 0)

- ① Calculer  $x_t$  en fonction de  $x_{t-1}$ .
- ② Calculer  $x_t$  en fonction de  $x_0$ , q, c et t.
- - 4 Dans le cas où  $x_t$  diminue, calculer la date t où  $x_t$  s'annule.
- $\circ$  Prendre, comme dans l'exemple, c=12 et q=2 et représenter en fonction de  $x_0$  le nombre maximum d'étapes que peut parcourir le marchand sans s'endetter.