AVRIL 2004

CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie B Option Mathématiques

CORRIGÉ DE L'ÉPREUVE DU CALCUL NUMÉRIQUE

Exercice n° 1

- a) $C_{10}^1 = 10$
- b) $C_{18}^2 = 153$
- c) $C_{22}^2 = 231$
- d) $C_{30}^3 = 4060$
- e) 1.434.925.800 = 10 x 153 x 231 x 4060

Exercice n° 2

Un équivalent de la fonction f en $+\infty$ est $(1-m)x^{\frac{3}{2}}$ lorsque m est différent de 1.

On en déduit que si m < 1, la limite cherchée est $+\infty$ et que si m > 1, la limite cherchée est $-\infty$

Lorsque m est égal à 1, un équivalent de la fonction f en $+\infty$ est $(1-\frac{p}{2})x^{\frac{1}{2}}$ lorsque p est différent de la valeur 2.

On en déduit que si p > 2, la limite cherchée est - ∞ et que si p < 2, la limite cherchée est + ∞

Dernier cas: m = 1 et p = 2. L'équivalent de la fonction f en $+\infty$ est $\frac{3}{2}x^{\frac{-3}{2}}$.

On trouve alors une limite nulle.

Exercice n° 3

- a) Soit g le taux de variation entre 1982 et 2002, alors on a par définition de celui-ci :
 3 = 1 (1 + g)
 D'où g = 200 %
- b) Soit g_m le taux moyen annuel de variation entre 1982 et 2002, on doit avoir : $(1 + g_m)^{20} = 3$ D'où $g_m = 5,647$ %
- c) De la même façon qu'au a), on trouve 6,67 %
- d) Soit n le nombre d'années cherché, on a : 3,2 x (1 + g_m)ⁿ = 5 D'où n = 8,26 soit 9 ans.

Exercice nº 4

Nous sommes en présence d'une moyenne harmonique. Soit H le résultat, on a :

$$\frac{2310}{H} = \frac{450}{200} + \frac{570}{150} + \frac{360}{180} + \frac{510}{300} + \frac{420}{210}$$

D'où H = 196,6 habitants/médecin

Exercice n° 5

- a) En utilisant le fait que i^2 = -1, on trouve $z = \frac{(4i^{22} i)^2}{(1+2i)^2} = -\frac{13}{25} \frac{84}{25}i$
- b) D'après la formule de Moivre, on a :
 (cos a + i sin a)³ = cos 3a + isin 3a
 D'où cos 3a = 4 cos³ a 3 cos a et sin 3a = 4 sin³ a + 3 sin a

Exercice n° 6

	Décision correcte	Décision défectueuse	Total
Correct en réalité	0,99 x 0,95 = 0,9405	0,01 x 0,95 = 0,0095	0,95
Défectueux en réalité	0,10 x 0,05 = 0,0050	0,90 x 0,05 = 0,0450	0,05
Total	0,9455	0,0545	1

- a) La probabilité pour que le contrôleur déclare un article quelconque défectueux est donc 5,45 %
- b) La probabilité pour que le contrôleur se trompe en déclarant qu'un article est défectueux est une probabilité conditionnelle qui vaut 17,43 %
- c) Le contrôleur prend une décision erronée dans 0,0095 + 0,0050 = 1,45 % des cas.

Exercice n° 7

A partir des développements limités connus, on trouve le développement limité suivant pour la fonction f :

$$f(x) = (1+b-a) x + (1/2-b^2+ab) x^2 + (1/6+b^3-ab^2) x^3 + o(x^3)$$

Pour déterminer a et b tels que le premier terme non nul soit le terme en x^3 , il faut que (1+b-a) soit nul ainsi que (1/2-b²+ab). La résolution de ce système de deux équations à deux inconnues donne comme résultat a=1/2 et b=-1/2

Pour conclure, il faut vérifier que le terme en x^3 ne soit pas nul. Ceci est vérifié puisque l'on trouve -1/12.