CONCOURS D'ELEVE INGENIEUR DES TRAVAUX STATISTIQUES

VOIE B

OPTION MATHEMATIQUES

CORRIGE DE LA DEUXIEME EPREUVE DE MATHEMATIQUES

EXERCICE I

On applique la formule de Taylor :

$$\begin{cases} P(X + a_0) = P(X) + \frac{a_0}{1!} P'(X) + \dots + \frac{a_0^n}{n!} P^{(n)}(x) \\ \vdots \\ P(X + a_n) = P(X) + \frac{a_n}{1!} P'(X) + \dots + \frac{a_n^n}{n!} P^{(n)}(x) \end{cases}$$

On sait que les polynômes $P(X),...,P^{(n)}(X)$ forment une base de l'espace $R_n[X]$ des polynômes à coefficients réels de degré n car ils constituent une famille échelonnée.

Donc $(P(X + a_0), ..., P(X + a_n))$ forment une base de $R_n[X]$ si et seulement si la matrice $\begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ \vdots & & & \vdots \\ \vdots & & & \vdots \\ 1 & a_n & \cdots & a_n^n \end{pmatrix}$

est inversible. C'est le cas car son déterminant est un déterminant de Vandermond (non nul si et seulement si les a_i sont deux à deux distincts.

EXERCICE II

1) Par l'absurde:

si A non inversible, alors il existe $\lambda_1,\ldots,\lambda_n$ non tous nuls tels que $\lambda_1C_1+\ldots+\lambda_nC_n=0$ (1) où C_1,\ldots,C_n sont les colonnes de A. Il existe i_0 tel que pour tout $j\neq i_0,\left|\lambda_j\right|\leq\left|\lambda_{i_0}\right|$ (2)

Alors la relation (1) donne $\lambda_1 a_{i_0} + \dots + \lambda_{i_0} a_{i_0} + \dots + \lambda_n a_{i_0} = 0$ d'où

$$\begin{split} \lambda_{i_0} a_{i_0 i_0} &= -\sum\limits_{j \neq i_0} \lambda_j a_{i_0 j} \Rightarrow \left| \lambda_{i_0} a_{i_0 i_0} \right| \leq \sum\limits_{j \neq i_0} \left| \lambda_j a_{i_0 j} \right| \leq \left| \lambda_{i_0} \right| \sum\limits_{j \neq i_0} \left| a_{i_0 j} \right| \text{ contradiction avec 1'hypothèse} \\ \forall i, \left| a_{ii} \right| &> \sum\limits_{i \neq j} \left| a_{ij} \right|. \end{split}$$

2) On sait que $I, B, ..., B^{n^2}$ est une famille à n^2+1 éléments dans l'espace des matrices carrées d'ordre n à coefficients complexes donc elle est liée. Donc il existe $\lambda_1, ..., \lambda_n$ non tous nuls tels que $\lambda_0 I + ... + \lambda_{n^2} B^{n^2} = 0$. Soit k le plus petit entier tel que $\lambda_k \neq 0$ alors $\lambda_k B^k + ... + \lambda_{n^2} B^{n^2} = 0$. Comme k inversible, on peut multiplier la dernière équation par k0 d'où k1 equ'il fallait démontrer.

3) Soit
$$J = C(0,1,0) = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 0 & 6 \\ 0 & 1 & 0 \end{pmatrix}$$
, alors $J^2 = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 6 & -2 \\ 1 & 0 & 6 \end{pmatrix} = C(0,0,1)$

 $C(a,b,c) = aI + bJ + cJ^2$

$$J^{3} = \begin{pmatrix} -2 & 0 & -12 \\ 6 & -2 & 36 \\ 0 & 6 & -2 \end{pmatrix} = -2I + 6J$$

Donc, par récurrence immédiate, $\forall k \in N, J^k \in Vect(I, J, J^2)$

Donc comme C^{-1} est un polynôme en J, $C^{-1} \in Vect(I,J,J^2)$ donc C^{-1} est de la forme cherchée.

PROBLEME

Partie I:

L'espace E est euclidien donc pour toute forme linéaire φ de E, il existe un unique vecteur $v / \forall u \in E, \varphi(u) = \langle u, v \rangle$. Alors pour tout $y \in E, \langle f(u), y \rangle$ est une forme linéaire donc il existe un unique vecteur noté $f^*(y)$ tel que $\langle f(u), y \rangle = \langle u, f^*(y) \rangle$.

Il reste à montrer la linéarité de l'application f^* ainsi définie :

$$\langle x, f * (y + y') - (f * (y) + f * (y')) \rangle = \langle f(x), y + y' \rangle - \langle f(x), y \rangle - \langle f(x), y' \rangle = 0$$

De même, pour tout a réel et pour tout y, $\langle x, f^*(ay) - af^*(y) \rangle = \langle f(x), ay \rangle - a \langle f(x), y \rangle = 0$.

- 2) si f * admet comme matrice dans une base orthonormée B alors $(B)_{ij}$ est la composante de f * (e_j) sur le vecteur e_i i.e. $B_{ij} = \langle e_i, f *(e_j) \rangle = \langle f(e_i), e_j \rangle = (A)_{ji}$. Où A est la matrice de f dans cette même base orthonormée.
 - $\langle x, (f+g)^*(y) \rangle = \langle (f+g)(x), y \rangle = \langle x, (f^*+g^*)(y) \rangle$
- 3) $\langle x, (\lambda f)^*(y) \rangle = \langle \lambda f(x), y \rangle = \langle x, \lambda f^*(y) \rangle$ $\langle x, (f \circ g)^*(y) \rangle = \langle (f \circ g)(x), y \rangle = \langle g(x), f^*(y) \rangle = \langle x, g^* \circ f^*(y) \rangle$
- 4) Si $f(F) \subset F$, $\forall y \in F^{\circ}$, $\langle f^{*}(y), x \rangle = \langle y, f(x) \rangle = 0$ car $f(x) \in F$ donc $f^{*}(y) \in F^{\circ}$

Inversement, si F° stable, alors $F^{\circ \circ}(\supset F)$ est stable par $f^{**}=f$ et comme $\begin{cases} E=F \oplus F^{\circ} \\ E=F^{\circ} \oplus F^{\circ \circ} \end{cases}$ avec l'égalité des dimensions, on a $F=F^{\circ \circ}$

6) On sait qu'une matrice et sa transposée ont même polynôme caractéristique. On a montré que la matrice de l'adjoint d'une application dans une base orthonormée est égale à la transposée de cette application d'où la conclusion.

Partie II

- 1) Soit f un endomorphisme normal et soit $P(f) = a_0 + a_1 f + ... + a_n f^n$ alors il est évident que $P(f) \circ P(f^*) = P(f^*) \circ P(f)$ donc P(f) est normal.
- 2) Pour tous les sous-espaces propres de f endomorphisme normal, il existe un polynôme P tel que ce sev propre est un noyau de P(f) or $P(f)(x) = 0 \Leftrightarrow \langle P(f)(x), P(f)(x) \rangle = 0$ et $\langle P(f)(x), P(f)(x) \rangle = \langle x, P(f^*) \circ P(f)(x) \rangle = \langle x, P(f) \circ P(f^*)(x) \rangle = \langle P(f^*)(x), P(f^*)(x) \rangle$ d'où $\langle P(f^*)(x), P(f^*)(x) \rangle = 0$

d'où $P(f^*)(x) = 0$

3) Soit x et y tels que $\begin{cases} f(x) = \lambda x \\ f(y) = \infty y, \ \langle f(x), y \rangle = \langle \lambda x, y \rangle = \langle x, \infty y \rangle \text{ d'où } (\lambda - \infty) \langle x, y \rangle = 0 \text{ et comme} \\ \lambda \neq \infty \end{cases}$

 $\lambda \neq \infty, \langle x, y \rangle = 0$.

4), 5) et 6) soit $(e_1, ..., e_p)$ une base orthonormée de F sous espace stable par f. Complétons cette base par une base orthonormée $(e_{p+1}, ..., e_n)$ alors dans cette base la matrice de f peut s'écrire : $\begin{pmatrix} A & D \\ 0 & C \end{pmatrix}$ donc celle

de f * dans cette même base s'écrit $\begin{pmatrix} {}^tA & 0 \\ {}^tD & {}^tC \end{pmatrix}$. Comme f est normale, matriciellement (1)

 $A^tA + D^tD = {}^tAA$ et ${}^tDD = C^tC + D^tD$ alors $(1) \Rightarrow tr(D^tD) = 0 \Rightarrow \sum_{i,j} d_{ij}^2 = 0 \Rightarrow D = 0$.

Donc la matrice de f dans la base considérée est $\begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$ et celle de f * est $\begin{pmatrix} {}^tA & 0 \\ 0 & {}^tC \end{pmatrix}$ avec $A^tA = {}^tAA$ et

 $^tDD = D^tD$ ce qui implique que F et F° sont stables par f et f * et que les restrictions de f à F et F° sont des endomorphismes normaux.

Partie III

1) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ matrice d'un endomorphisme normal. Alors, $A^t A = {}^t AA \Rightarrow b^2 - c^2 = 0$ et (a - d)(b - c) = 0

Si b = c les 2 équations sont vérifiées

Si
$$b \neq c$$
,
$$\begin{cases} a = d \\ b = -c \neq 0 \end{cases}$$

d'où 2 écritures possibles pour A : $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ ou $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ avec b non nul dans la seconde expression.

Cette seconde expression peut aussi s'écrire $\rho \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ si on pose $a - ib = \rho e^{i\theta}, \theta \neq k\pi, k \in \mathbb{Z}$

La première expression est celle d'une matrice symétrique donc cette matrice est diagonalisable.

2) Par récurrence sur n dimension de E.* C'est évident si n=1.

On suppose la propriété vraie au rang n-1.

En dimension n, on sait que f admet un sous espace stable de dimension 1 ou 2. En effet, le polynôme caractéristique de f peut se factoriser en produit de polynômes de degrés 1 ou 2. Si il existe un facteur de degré 1, on a une droite vectorielle stable par f, sinon, on aura un plan vectoriel stable par f.

Soit F un sous-espace stable par f de dimension 1 ou 2 et soit F° son orthogonal dans E. On peut alors appliquer l'hypothèse de récurrence à F et F° : il existe 2 bases orthonormées de F et F° telles que dans chacune de ces bases f a la forme exigée. Il ne reste plus qu'à considérer la base orthonormée constituée de la réunion de chacune de ces bases.

3) Le polynôme caractéristique s'écrira alors :
$$\chi_A(T) = \prod_i (\lambda_i - T)^{a_i} \prod_j (T^2 - 2\rho_j \cos \theta_j T + \rho_j^2)$$

4) A est orthogonalement semblable à
$$\begin{pmatrix}
0 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\sqrt{3}/2 & -\frac{1}{2}
\end{pmatrix}$$

$$0 \qquad \qquad \begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\sqrt{3}/2 & -\frac{1}{2}
\end{pmatrix}$$