ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ABIDJAN

AVRIL 2002

CONCOURS D'ÉLÈVE INGÉNIEUR DES TRAVAUX STATISTIQUES VOIE B Option Mathématiques

CORRIGÉ DE LA DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

EXERCICE N^01

1. (a) Les valeurs propres (réelles) sont -1, 1 et 2.

(b)
$$E_{-1} = \text{Vect}\{t(-1,1,0)\}, E_1 = \text{Vect}\{t(1,1,0)\} \text{ et } E_2 = \text{Vect}\{t(0,0,1)\}$$

- (c) A a 3 valeurs propres distinctes elle est donc diagonalisable. Elle est également inversible car 0 n'est pas valeur propre.
- 2. (a) On connait une base de vecteur propre. Un matrice de passage possible est :

$$P = \left(\begin{array}{rrr} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

(b)

$$P^{-1} = \frac{1}{2} \left(\begin{array}{rrr} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right).$$

- 3. (a) Il est clair que $(P^{-1}AP)^n = P^{-1}A^nP$. Comme $P^{-1}AP$ est diagonale, cela prouve que A^n est diagonalisable dans la même base que A.
 - (b) On en déduit alors :

$$A^{n} = P(P^{-1}AP)^{n}P^{-1} = P\begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} P^{-1}$$
$$= \frac{1}{2} \begin{pmatrix} (-1)^{n} + 1 & (-1)^{n+1} + 1 & 0 \\ (-1)^{n+1} + 1 & (-1)^{n} + 1 & 0 \\ 0 & 0 & 2^{n+1} \end{pmatrix}.$$

(c) Il est facile de voir que $P^{-1}A^{-1}P$ est également diagonale. En fait, la forme précédente est valable pour tout n dans \mathbb{Z} . On a donc :

$$A^{-1} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \end{array}\right).$$

EXERCICE N⁰2

f est un endomorphisme de E de dimension n tel qu'il existe un entier $p \geq 2$ vérifiant $f^p = 0$ et $f^{p-1} \neq 0$.

1. Comme $f^{p-1} \neq 0$, il existe x tel que $f^{p-1}(x) \neq 0$. Soit alors p réels $\lambda_0, \dots, \lambda_{p-1}$ vérifiant :

$$\sum_{i=0}^{p-1} \lambda_i f^i(x) = 0. (1)$$

L'image par f^{p-1} de cette expression est également nulle. Or :

$$f^{p-1}\left(\sum_{i=0}^{p-1} \lambda_i f^i(x)\right) = \lambda_0 f^{p-1}(x),$$

car $f^k = 0$ dès que $k \ge p$. Comme, par hypothèse, $f^{p-1}(x) \ne 0$, on a donc $\lambda_0 = 0$. On recommence alors en prenant l'image par f^{p-2} de l'expression (1) et on obtient de même $\lambda_1 = 0$. De proche en proche, on prouve alors que :

$$\lambda_0 = \dots = \lambda_{p-1} = 0,$$

ce qui permet d'affirmer que la famille $\{x, f(x), \dots, f^{p-1}(x)\}$ est libre.

Réciproquement, si la famille $\{x, f(x), \cdots, f^{p-1}(x)\}$ est libre, tous les éléments qui la composent sont non nuls et en particulier $f^{p-1}(x) \neq 0$.

- 2. E étant de dimension n, une famille libre de E ne peut pas comporter plus de n éléments ce qui montre que $p \le n$.
- 3. Soit $x \in Kerf^k$. $f^{k+1}(x) = f(f^k(x)) = f(0) = 0$, donc $x \in Kerf^{k+1}$. En particulier on a bien $\{0\} \subset Kerf \subset Kerf^{p-1} \subset Kerf^p = E$.

4. Montrons que toutes ces inclusions sont strictes.

Soit x tel que $f^{p-1}(x) \neq 0$ et soit $1 \leq k \leq p$. Posons $y = f^{p-k}(x)$ (avec par convention $f^0 = Id$). On a alors $f^k(y) = f^p(x) = 0$ et $f^{k-1}(y) = f^{p-1}(x) \neq 0$. Donc $y \in Kerf^k$ et $y \notin Kerf^{k-1}$, ce qui prouve que l'inclusion de $Kerf^{k-1}$ dans $Kerf^k$ est stricte .

PROBLÈME

Partie I

- 1. Il est clair que la trace est linéaire.
- 2. Les éléments diagonaux étant invariants par l'opération de transposition, on a bien $tr(A) = tr({}^tA)$.
- 3. (a) Le terme générique de AB est $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ donc :

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}.$$

De même, terme générique de BA est $d_{ij} = \sum_{k=1}^n b_{ik} a_{kj}$ d'où :

$$\operatorname{tr}(BA) = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki}.$$

En permutant les sommes sur i et sur k on obtient le résultat.

(b) Si A et B sont semblables, il existe une matrice P inversible telle que $B = P^{-1}AP$. On peut alors écrire d'après le 3.(a):

$$trB = tr(P^{-1}AP) = tr(PP^{-1}A) = trA.$$

4. Il est clair que $\operatorname{tr}(A^tA - ^tAA) = 0$ et $\operatorname{tr}I = n$. n étant non nul, le résultat est acquis.

Partie II

- 1. La trace étant une application linéaire, on a bien le résultat.
- 2. (a) f est linéaire pour les mêmes raisons que précédemment.
 - (b) Soit $A = (a_{ij})_{1 \leq i,j \leq n}$ telle que f(A) = 0. Cela signifie donc que pour tout X de $\mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(AX) = 0$. Soit la matrice E_{lm} dont tous les éléments sont nuls sauf celui au croisement de la l-ième ligne et de la m-ième colonne qui vaut 1. Les terme diagonaux de AE_{lm} sont :

$$c_{ii} = \sum_{k=1}^{n} a_{ik} e_{ki} = a_{il} e_{li},$$

Car e_{ki} est nul si k est différent de l. Mais e_{li} est nul si i est différent de m, donc le seul terme diagonal éventuellement non nul est c_{mm} qui vaut alors a_{ml} . Comme $\operatorname{tr}(AE_{lm})=0$, on a en fait $a_{ml}=0$. En faisant varier l et m entre 1 et n, on trouve donc que tous les éléments de A sont nuls. On a finalement prouvé que :

$$(f(A) = 0) \Rightarrow (A = 0)$$
,

ce qui est exactement l'injectivité de f.

- (c) dim $\mathcal{M}_n(\mathbb{R})$ = dim $\mathcal{M}_n(\mathbb{R})^* = n^2$.
- (d) f est une application linéaire injective de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})^*$, qui sont de même dimension, donc f est bijective.
- 3. (a) Soit e_1, \dots, e_{n^2-1} une base de E. D'après le théorème de la base incomplète, il existe u dans $\mathcal{M}_n(\mathbb{R})$ tel que $(e_1, \dots, e_{n^2-1}, u)$ forment une base de $\mathcal{M}_n(\mathbb{R})$. La forme linéaire φ_0 définie par $\varphi_0(u) = 1$ et $\varphi_0(e_1) = \dots = \varphi_0(e_{n^2-1}) = 0$ répond alors à la question.
 - (b) L'application f est bijective, donc pour tout φ de $\mathcal{M}_n(\mathbb{R})^*$, il existe A dans $\mathcal{M}_n(\mathbb{R})$ telle que :

$$\varphi = f(A).$$

Donc, il existe A_0 dans $\mathcal{M}_n(\mathbb{R})$ telle que φ_0 est l'application $M \mapsto \operatorname{tr}(A_0 M)$. On alors bien :

$$E = \operatorname{Ker} \varphi_0 = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(A_0 M) = 0 \}.$$