CONCOURS INGENIEURS DES TRAVAUX STATISTIQUES

ITS voie B Option Mathématiques

CORRIGE DE LA 2^{ème} COMPOSITION DE MATHEMATIQUES

Exercice n° 1

- 1. On vérifie que $M^2 = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} = 2I M$.
- 2. On a $M^2 + M 2I = 0$ et $P(x) = x^2 + x 2$ répond à la question.
- 3. M étant symétrique, elle est diagonalisable. D'après le théorème de Cayley-Hamilton, pour λ valeur propre de M, on a : $\lambda^2 + \lambda 2 = 0$, d'où $\lambda = 1$ ou -2. La trace étant invariante par changement de base, on a aussi : $1-2+\lambda=Tr(M)=-3$, d'où $\lambda=-2$. En conclusion, $\lambda=1$ est une valeur propre simple et $\lambda=-2$ une valeur propre double.
- 4. Le reste de la division euclidienne de X^n par P(X) est nécessairement un polynôme du premier degré, c'est-à-dire :

$$X^{n} = (X^{2} + X - 2)Q(X) + (aX + b)$$

Pour X=1, on obtient 1=a+b et pour X=-2, $(-2)^n=-2a+b$. La résolution du système donne :

$$a = \frac{1 - (-2)^n}{3}$$
 et $b = \frac{2 + (-2)^n}{3}$

5. $M^n = (M^2 + M - 2I)Q(M) + (aM + bI)$ et comme $M^2 + M - 2I = 0$, on obtient $M^n = aM + bI$ ou encore,

$$M^{n} = \frac{1}{3} \begin{pmatrix} 1 + (-2)^{n+1} & 1 - (-2)^{n} & 1 - (-2)^{n} \\ 1 - (-2)^{n} & 1 + (-2)^{n+1} & 1 - (-2)^{n} \\ 1 - (-2)^{n} & 1 - (-2)^{n} & 1 + (-2)^{n+1} \end{pmatrix}$$

6. On obtient
$$U_{n+1} = M^n U_1 = \begin{pmatrix} b-a & a & a \\ a & b-a & a \\ a & a & b-a \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} b+a \\ b+a \\ b+a \end{pmatrix}$$
, d'où

$$x_{n+1} = y_{n+1} = z_{n+1} = 1$$

Exercice n° 2

1. On vérifie aisément que l'on a une norme, en effet,

(1)
$$||f|| = 0 \Leftrightarrow \sup_{x \neq 0} ||f(x)|| = 0 \Leftrightarrow f(x) = 0, \forall x \neq 0 \Leftrightarrow f(x) = 0, \forall x \text{ (car } f(0) = 0).$$

- (2) $\forall \lambda \in R, \|\lambda f\| = |\lambda| \times \|f\|$
- (3) $\forall f, g \in L(E), \|(f+g)(x)\| \le \|f(x)\| + \|g(x)\|, \forall x \in E, \text{ d'où } \|f+g\| \le \|f\| + \|g\|$

2. Si I-(P-Q) n'est pas inversible, alors $\exists u \neq 0, \ (I-(P-Q))(u) = 0$, d'où u = (P-Q)(u) et $\|u\| = \|(P-Q)u\| \leq \|P-Q\| \times \|u\| < \|u\|$, ce qui est impossible.

Comme I-(P-Q) est inversible, il existe un endomorphisme v de E tel que : (I-(P-Q))v=I, d'où P(I-(P-Q))v=P ou encore $(P-P^2+PQ)v=P$ et PQv=P car $P^2=P$. Pour tout x de E, on a P(x)=PQ(v(x)), à savoir P(E)=PQ(E).

Soit $y \in \text{Im}(P)$, alors y = P(x) = PQ(v(x)) et $t = Q(v(x)) \in \text{Im}Q$ vérifie y = P(t). P est donc une application bijective.

P étant un isomorphisme d'espace vectoriel entre ${\rm Im}(P)$ et ${\rm Im}(Q)$, les dimensions sont égales.

Exercice n° 3

Soit (u_n) une suite de nombres réels. A cette suite, on associe deux autres suites (s_n) et (r_n) définies par :

$$s_n = \sum_{k=1}^{n} u_k$$
 et $r_n = \sum_{k=1}^{n} \frac{u_k}{k}$

1. Pour n=2, $r_2=\frac{s_1}{2}+\frac{s_2}{2}=u_1+\frac{u_2}{2}$. La relation est donc vérifiée.

$$r_{n+1} = r_n + \frac{u_{n+1}}{n+1} = \sum_{k=1}^{n-1} \frac{s_k}{k(k+1)} + \frac{s_n}{n} + \frac{u_{n+1}}{n+1} = \sum_{k=1}^{n-1} \frac{s_k}{k(k+1)} + \frac{s_n}{n(n+1)} + \frac{s_{n+1}}{n+1} = \sum_{k=1}^{n} \frac{s_k}{k(k+1)} + \frac{s_{n+1}}{n+1} = \sum_{$$

2.
$$r_n = \sum_{k=1}^n \frac{u_k}{k} = \sum_{k=1}^{n-1} \frac{s_k}{k(k+1)} + \frac{s_n}{n}$$

La première série est convergente et le deuxième terme tend vers zéro par hypothèse.

2

La suite (r_n) a donc une limite finie et la série de terme général $\frac{u_n}{n}$ converge.

3. Soit
$$s_n = \sum_{k=1}^n u_k$$
. Pour n grand, $|s_n| \le l$ et $\left| \frac{s_n}{n(n+1)} \right| \le \frac{l}{n(n+1)}$, donc l'hypothèse

2a) est vérifiée. De plus $\lim_{n\to\infty}\frac{S_n}{n}=0$, et la série de terme général $\frac{u_n}{n}$ est convergente d'après la question précédente.

- 4. On vérifie que : $\lim_{n\to\infty}\frac{S_n}{n}=0$, et que la série de terme général $\frac{S_n}{n(n+1)}$ est convergente.
 - 5. On considère la suite (s_n) définie par :

$$s_n = \begin{cases} 2k & si \ n = 2k \\ -(2k+1) & si \ n = 2k+1 \end{cases}$$
. Elle vérifie les relations demandées.

En effet:

$$\sum_{k=1}^{n} \frac{s_k}{k(k+1)} = \sum_{k=1}^{E(n/2)} \frac{1}{2k+1} - \sum_{k=0}^{E(n+1/2)-1} \frac{1}{2k+2} = \sum_{k=1}^{E(n/2)} \frac{1}{(2k+1)(2k+2)} - \frac{1}{2}$$

(série convergente) et $\lim_{n\to\infty} \frac{s_n}{n}$ n'existe pas.

Exercice n° 4

- 1. On vérifie que f(-x) = -f(x) et $\lim_{x\to 0} f(x) = f(0) = 0$
- 2. Vérifions que f est dérivable à l'origine : $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} \frac{e^{x^2}-1}{x^2} = 1$.

Pour
$$x \neq 0$$
, $f'(x) = \frac{e^{x^2}(2x^2 - 1) + 1}{x^2} = \frac{u(x^2)}{x^2}$.

Puis
$$u'(t) = (2t+1) \exp(t)$$
, donc $u(t) > 0 \text{ sur } R^{+*}$.

La fonction f est strictement croissante et continue sur R, elle est donc bijective et admet une fonction réciproque également impaire.

3.
$$e^{x^2} = 1 + \frac{x^2}{1!} + \frac{(x^2)^2}{2!} + \dots + \frac{(x^2)^n}{n!} + o(x^{2n})$$

$$\frac{e^{x^2} - 1}{x} = \frac{x}{1!} + \frac{x^3}{2!} + \dots + \frac{x^{2n-1}}{n!} + o(x^{2n-1})$$

Pour $x \neq 0$, on a: $f(x) = x + \frac{x^3}{2!} + ... + \frac{x^{2n-1}}{n!} + x^{2n-1} \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$. On prolonge ε en 0 par $\varepsilon(0) = 0$.

4.
$$f(x) = x + \frac{x^3}{2} + \frac{x^5}{6} + o(x^5)$$

Pour f^{-1} , il suffit de résoudre le système linéaire obtenu en écrivant :

$$f^{-1}(x) = a_1x + a_3x^3 + a_5x^5 + o(x^5)$$
 et

$$f^{-1} o f(x) = x \implies a_1 \left(x + \frac{x^3}{2} + \frac{x^5}{6}\right) + a_3 \left(x^3 + 3\frac{x^5}{2}\right) + a_5 x^5 + o(x^5) = x$$

d'où le système :

$$\begin{cases} a_1 = 1 \\ \frac{a_1}{2} + a_3 = 0 \\ \frac{a_1}{6} + \frac{2}{3}a_3 + a_5 = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 = 1 \\ a_3 = -\frac{1}{2} \\ a_5 = \frac{7}{2} \end{cases}$$

On obtient : $f^{-1}(x) = x - \frac{1}{2}x^3 + \frac{7}{12}x^5 + o(x^5)$.

Problème:

- 1. Supposons que f soit la composée d'une projection p et d'une homothétie h, on a $p\circ p=p$ et $h=\lambda Id$. On obtient $f(x)=p\circ h(x)=\lambda p(x)$. On pose donc $p(x)=\frac{1}{\lambda}f(x)$ et $h(x)=\lambda x$ avec $\lambda\neq 0$. On vérifie que $f\circ f=\lambda f$.
- 2. Soit $y \in \text{Im } f \cap Ker f$. On obtient : f(y) = 0 et $\exists x \in E / y = f(x)$, d'où $f(y) = f^2(x) = 0 = \lambda f(x)$ et y = f(x) = 0
- 3. Soient $f,g \in L_{\lambda}$. $(f+g) \in L_{\lambda}$ si et seulement si $(f+g) \circ (f+g) = \lambda (f+g)$ ou encore $f \circ g + g \circ f = 0$.

4

Si $f \circ g = g \circ f$, il est clair que $(f + g) \in L_{\lambda}$.

Réciproquement, on a :

$$f \circ g + g \circ f = 0$$
 (1)

On multiplie (1) par f à droite, puis à gauche,

$$\begin{cases} \lambda(g \circ f) + f \circ g \circ f = 0 \\ f \circ g \circ f + \lambda(f \circ g) = 0 \end{cases}$$

Par soustraction, on obtient $f \circ g - g \circ f = 0$ (2);

La résolution du système (1) et (2) donne le résultat demandé.

4. $(g \circ f) \circ (g \circ f) = g \circ (f \circ g) \circ f = g \circ (g \circ f) \circ f = (g \circ g) \circ (f \circ f) = \lambda_1 \lambda_2 (g \circ f)$, donc $\mu = \lambda_1 \lambda_2$.

5.
$$v \circ v \in L_{\lambda} \Leftrightarrow (u - aId) \circ (u - aId) = \lambda v \Leftrightarrow u^2 - 2au + a^2Id = \lambda(u - aId)$$

Par hypothèse, $u^2 - (a+b)u + abId = 0$, d'où $u^2 = (a+b)u - abId$. On trouve donc $\lambda = b - a$.

De même $w \circ w \in L_{\mu}$ avec $\mu = a - b$.

Par ailleurs, $u = \alpha v + \beta w \Leftrightarrow u = \alpha(u - aId) + \beta(u - bId)$. Ceci est vérifié pour $\alpha + \beta = 1$ et $\alpha a + \beta b = 0$, ce qui donne :

$$\alpha = \frac{b}{b-a}$$
 et $\beta = \frac{-a}{b-a}$

On a $u^n = \alpha^n v^n + \beta^n w^n$ car $v \circ w = w \circ v = 0$.

D'autre part $v^n = \lambda^{n-1}v$ et $w^n = \mu^{n-1}w$. On obtient :

$$u^n = \frac{b^n}{b-a} v - \frac{a^n}{b-a} w$$

6. Le polynôme caractéristique de A est

 $(\lambda+1)(-\lambda^2+\lambda+2)$, d'où d'après le théorème de Cayley-Hamilton :

$$A^{2} - A - 2I = (A + I)(A - 2I)$$

On obtient, par exemple, a = -1 et b = 2.

$$A^{n} = \frac{2^{n}}{3}(A+I) - \frac{(-1)^{n}}{3}(A-2I) = \frac{(2^{n} + (-1)^{n})}{3}A + \frac{(2^{n} + 2(-1)^{n})}{3}I$$