CONCOURS INGENIEURS DES TRAVAUX STATISTIQUES

ITS voie B Option Mathématiques

CORRIGE DE LA 2ème COMPOSITION DE MATHEMATIQUES

Exercice n° 1

Soit
$$M = \begin{pmatrix} p & q/2 & q/2 \\ q/2 & p & q/2 \\ q/2 & q/2 & p \end{pmatrix}$$
, où $p, q > 0$ et $p + q = 1$

1. Déterminer les valeurs propres de la matrice M.

 $\det(M - \lambda I) = (1 - \lambda)(p - q/2 - \lambda)^2$, d'où $\lambda = 1$ est une valeur simple et $\lambda = p - q/2$ est une valeur propre double.

2. Etudier la diagonalisation de la matrice M+

Si
$$p - q/2 = 1$$
, alors $M = I$.

Si $p-q/2 \neq 1$, la matrice M est diagonalisable si et seulement si la dimension du sous-espace propre associé à la valeur propre $\lambda = p-q/2$ est égale à deux.

On trouve deux vecteurs propres : $u_2(1,-1,0)$ et $u_3(0,-1,1)$. Et $u_1(1,1,1)$ est un vecteur propre associé à la valeur propre 1.

$$M$$
 est diagonalisable et semblable à $\Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & p-q/2 & 0 \\ 0 & 0 & p-q/2 \end{pmatrix}$

3. Calculer M^n pour tout entier n.

$$M^{n} = P\Delta^{n}P^{-1}$$
, avec $\Delta^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (p-q/2)^{n} & 0 \\ 0 & 0 & (p-q/2)^{n} \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$

et
$$P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
.

On obtient
$$M^n = \frac{1}{3} \begin{pmatrix} 1 + 2(p - q/2)^n & 1 - (p - q/2)^n & 1 - (p - q/2)^n \\ 1 - 3(p - q/2)^n & 1 & 1 + 3(p - q/2)^n \\ 1 + (p - q/2)^n & 1 + (p - q/2)^n & 1 - 2(p - q/2)^n \end{pmatrix}$$

4. Calculer $\lim_{n\to\infty} M^n$

Pour p-q/2 < 1, $\lim_{n \to \infty} M^n = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, sinon la convergence n'est pas assurée.

Exercice n° 2

Soient $f_n(x) = \int_0^x (1-t^2)^n dt$ et $F_n(x) = \int_0^x \frac{f_n(t)}{f_n(1)} dt$ où n est un entier naturel et x un nombre réel strictement positif.

1. Trouver une relation de récurrence entre $f_n(1)$ et $f_{n-1}(1)$. En déduire la valeur de $f_n(1)$ en fonction de n.

On obtient: $f_0(1) = 1$ et $f_1(1) = 2/3$

A l'aide d'une intégration par parties :

$$f_n(1) = \left[t(1-t^2)^n\right]_0^1 + 2n\int_0^1 t^2 (1-t^2)^{n-1} dt = 2n\int_0^1 t^2 (1-t^2)^{n-1} dt = 2n\int_0^1 (t^2-1+1)(1-t^2)^{n-1} dt$$

$$f_n(1) = -2nf_n(1) + 2nf_{n-1}(1), \text{ d'où } f_n(1) = \frac{2n}{2n+1} f_{n-1}(1)$$

Par récurrence, on obtient : $f_n(1) = \frac{(2^n n!)^2}{(2n+1)!}$

2. Montrer que
$$\int_{0}^{1} (f_n(1) - f_n(t)) dt = \frac{1}{2(n+1)}$$

 $\int_{0}^{1} (f_n(1) - f_n(t)) dt = \int_{0}^{1} (\int_{t}^{1} (1 - x^2)^n dx) dt$. On fait une intégration par parties, en posant : u' = 1

et $v = \int_{t}^{1} (1 - x^2)^n dx$ et on obtient immédiatement le résultat : $\int_{0}^{1} (f_n(1) - f_n(t)) dt = \frac{1}{2(n+1)}$.

3. Etudier la suite (u_n) définie par : $u_n = 1 - F_n(1)$

$$u_n = 1 - F_n(1) = \int_0^1 \frac{f_n(1)}{f_n(1)} dt - \int_0^1 \frac{f_n(t)}{f_n(1)} dt = \frac{1}{f_n(1)} \int_0^1 (f_n(1) - f_n(t)) dt = \frac{1}{(2n+1)f_n(1)}$$

On a : $\frac{u_{n+1}}{u_n} = \frac{2n+3}{2n+4}$. La suite (u_n) est décroissante et minorée par 0, donc elle converge.

Exercice nº 3

Soient f la fonction numérique définie sur R^2 par : $f(x,y) = \exp(-(x^2 + y^2))$ et $D = R^+ \times R^+$.

1. Calculer
$$I = \iint_D f(x, y) dx dy$$

Soit $K_n = \{(x, y) / x \ge 0, y \ge 0, x^2 + y^2 \le n^2 \}$.
 $I_n = \iint_{K_n} f(x, y) dx dy = \iint_{K_n} re^{-r^2} dr d\alpha = \int_0^{\pi/2} d\alpha \int_0^n re^{-r^2} dr = \frac{\pi}{4} - \frac{\pi}{4} e^{-n^2}$.
Et $I = \lim_n I_n = \frac{\pi}{4}$.

2. En déduire la valeur des intégrales : $\int_{-\infty}^{+\infty} \exp(-x^2) dx$ et $\int_{-\infty}^{+\infty} \exp(-x^2) dx$.

$$I = \iint_{D} f(x, y) dx dy = \int_{0}^{\infty} \exp(-x^{2}) dx \int_{0}^{\infty} \exp(-y^{2}) dy = (\int_{0}^{\infty} \exp(-x^{2}) dx)^{2} = \frac{\pi}{4}. \text{ On obtient :}$$

$$\int_{0}^{+\infty} \exp(-x^{2}) dx = \frac{\sqrt{\pi}}{2} \text{ et } \int_{-\infty}^{+\infty} \exp(-x^{2}) dx = \sqrt{\pi}$$
Docs à portée de main

3. En déduire la valeur de $\frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \exp(-\frac{x^2}{2}) dx$ et interpréter ce résultat.

Par un changement de variable $t = x/\sqrt{2}$, on obtient : $\frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \exp(-\frac{x^2}{2}) dx = 1$. La fonction

 $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$ est positive te d'intégrale égale à 1 sur R, c'est donc une densité et on reconnait celle de la loi normale centrée réduite.

4. Soit
$$f_{\alpha}: R^{+} \to R$$
 définie par : $f_{\alpha}(x) = 2\varphi(x)\phi(\alpha x)$, où $\alpha \in R$, $\varphi(x) = \frac{1}{\sqrt{2\pi}}\exp(-\frac{x^{2}}{2})$ et

$$\phi(\alpha x) = \int_{-\infty}^{\alpha x} \varphi(t) dt$$
. Déterminer $\lim_{\alpha \to +\infty} f_{\alpha}(x)$

Pour
$$x=0$$
, $\lim_{\alpha \to +\infty} f_{\alpha}(x) = \frac{1}{2\sqrt{\pi}}$ et

Pour
$$x \neq 0$$
, $\lim_{\alpha \to +\infty} f_{\alpha}(x) = 2\varphi(x)$

5. Déterminer $\lim_{\alpha \to +\infty} f_{\alpha}(x)$ dans le cas où $\varphi(x) = x \exp(-x^2)$

Pour tout
$$x$$
, $\lim_{\alpha \to +\infty} f_{\alpha}(x) = 0$

Exercice nº 4

Soit (u_n) une suite de nombres réels positifs.

1. Etudier, selon la nature de la série de terme général u_n , la convergence de la série de terme

général :
$$v_n = \frac{u_n}{1 + u_n}$$

Si $\lim u_n = 0$, alors v_n est équivalent à u_n et les deux séries sont de même nature.

Si $\lim_{n} u_n \neq 0$, alors $\lim_{n} v_n \neq 0$ et les deux séries sont toujours de même nature.

2. Etudier, selon la nature de la série de terme général u_n , la convergence de la série de terme

général :
$$w_n = \frac{u_n}{1 + u_n^2}$$

Si la série de terme général u_n converge, alors $\lim_n u_n = 0$ et w_n est équivalent à u_n , donc la série de terme général w_n converge.

Si la série de terme général u_n diverge et si la suite (u_n) est majorée $(u_n \le K)$, on a : $w_n \ge \frac{u_n}{1+K^2}$ et la série de terme général w_n diverge également.

Si la série de terme général u_n diverge et si la suite (u_n) n'est pas majorée, on ne peut rien dire sur la série de terme général w_n . Par exemple, pour $u_n = \sqrt{n}$, la série de terme général w_n diverge et pour $u_n = n^2$, la série de terme général w_n converge.

Exercice nº 5

Soient $f,g:[a,b] \rightarrow R$ continues sur [a,b] et dérivables sur [a,b].

1. On pose $\varphi(x) = \lambda (f(x) - f(a)) + \mu (g(x) - g(a))$.

Déterminer λ et μ de sorte que $\varphi(a) = \varphi(b)$.

Comme $\varphi(a)=0$, il faut aussi $\varphi(b)=\lambda(f(b)-f(a))+\mu(g(b)-g(a))=0$. Parmi les solutions possibles, on trouve : $\lambda_0=-(g(b)-g(a))$ et $\mu_0=f(b)-f(a)$. Les autres couples (λ,μ) vérifient : $(\lambda,\mu)=(k\lambda_0,k\mu_0)$.

2. En déduire que : $\exists c \in]a,b[,(f(b)-f(a))g'(c)-(g(b)-g(a))f'(c)=0$ On applique le théorème de Rolle à φ sur [a,b], il vient : $\varphi'(c)=0$, ce qui donne la relation recherchée.

5

3. En déduire, sous des conditions que l'on précisera que : $\exists c \in]a,b[,\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Il faut que g' ne s'annule pas sur a,b puisque $g(b)-g(a) \neq 0$ par le théorème des accroissements finis appliqué à g sur a,b.

Exercice nº 6

Trouver toutes les matrices qui commutent avec :

$$M = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$$

La matrice M est diagonalisable et semblable à : $\Delta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 4 & 4 & 2 \\ -3 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix}$

Donc $M = P\Delta P^{-1}$ et $\Delta = P^{-1}MP$.

Soit B une matrice qui commute avec M. Posons $X = P^{-1}BP$. On obtient : $MB = P\Delta XP^{-1}$ et $BM = PX\Delta P^{-1}$. Donc $\Delta X = X\Delta$ et il faut et il suffit que X commute avec la matrice diagonale Δ .

En écrivant les produits ΔX et $X\Delta$, on trouve la condition nécessaire et suffisante : X matrice diagonale. Soit X = diag(a,b,c), on obtient :

$$B = \begin{pmatrix} 4a - 8b + 6c & -8a + 16b - 8c & 16a - 40b + 24c \\ -3a + 3c & 6a - 4c & -12a + 12c \\ -2a + 2b & 4a - 4b & -8a + 10c \end{pmatrix}$$

6