ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA – ABIDJAN

AVRIL 2010

CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie B Option Mathématiques

2^{ème} COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 3 heures)

Calculatrice non programmable autorisée. Les exercices sont indépendants.

Exercice nº 1

Soit
$$M = \begin{pmatrix} p & q/2 & q/2 \\ q/2 & p & q/2 \\ q/2 & q/2 & p \end{pmatrix}$$
, où $p, q > 0$ et $p + q = 1$

- 1. Déterminer les valeurs propres de la matrice M.
- 2. Etudier la diagonalisation de la matrice *M*.
- 3. Calculer M^n pour tout entier n.
- 4. Calculer $\lim_{n\to\infty} M^n$

Exercice n° 2

Soient $f_n(x) = \int_0^x (1 - t^2)^n dt$ et $F_n(x) = \int_0^x \frac{f_n(t)}{f_n(1)} dt$ où n est un entier naturel et x un nombre réel strictement positif.

1. Trouver une relation de récurrence entre $f_n(1)$ et $f_{n-1}(1)$. En déduire la valeur de $f_n(1)$ en fonction de n.

- 2. Montrer que $\int_{0}^{1} (f_{n}(1) f_{n}(t)) dt = \frac{1}{2(n+1)}$
- 3. Etudier la suite (u_n) définie par : $u_n = 1 F_n(1)$

Fomesoutra.com

Exercice n° 3

Soient f la fonction numérique définie sur R^2 par : $f(x,y) = \exp(-(x^2 + y^2))$ et $D = R^+ \times R^+$.

- 1. Calculer $I = \iint_D f(x, y) dx dy$
- 2. En déduire la valeur des intégrales : $\int_{0}^{+\infty} \exp(-x^2) dx \text{ et } \int_{-\infty}^{+\infty} \exp(-x^2) dx.$
- 3. En déduire la valeur de $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp(-\frac{x^2}{2}) dx$.
- 4. Soit $f_{\alpha}: R^{+} \to R$ définie par : $f_{\alpha}(x) = 2\varphi(x)\phi(\alpha x)$, où $\alpha \in R$, $\varphi(x) = \frac{1}{\sqrt{2\pi}}\exp(-\frac{x^{2}}{2})$ et $\phi(\alpha x) = \int_{-\infty}^{\alpha x} \varphi(t) dt$. Déterminer $\lim_{\alpha \to +\infty} f_{\alpha}(x)$.
- 5. Déterminer $\lim_{\alpha \to +\infty} f_{\alpha}(x)$ dans le cas où $\varphi(x) = x \exp(-x^2)$

Exercice nº 4

Soit (u_n) une suite de nombres réels positifs.

- 1. Etudier, selon la nature de la série de terme général u_n , la convergence de la série de terme général : $v_n = \frac{u_n}{1 + u_n}$
- 2. Etudier, selon la nature de la série de terme général u_n , la convergence de la série de terme général : $w_n = \frac{u_n}{1 + u_n^2}$

2

Exercice n° 5

Soient $f,g:[a,b] \rightarrow R$ continues sur [a,b] et dérivables sur [a,b].

1. On pose $\varphi(x) = \lambda (f(x) - f(a)) + \mu (g(x) - g(a))$.

Déterminer λ et μ de sorte que $\varphi(a) = \varphi(b)$.

- 2. En déduire que : $\exists c \in [a, b[, (f(b) f(a))g'(c) (g(b) g(a))f'(c) = 0$
- 3. En déduire, sous des conditions que l'on précisera que : $\exists c \in \]a,b[,\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Exercice nº 6

Trouver toutes les matrices qui commutent avec :

$$M = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$$