AVRIL 2013

CONCOURS INGENIEURS DES TRAVAUX STATISTIQUES

ITS voie B Option Mathématiques

CORRIGE DE LA 2ème COMPOSITION DE MATHEMATIQUES

Exercice nº 1

On considère la fonction f définie sur R^* par : $f(x) = \frac{Ln(1+x^2)}{x}$, où Ln désigne le logarithme népérien.

1. Etudier les variations et tracer le graphe de la fonction f (on précisera l'allure du graphe au voisinage de l'origine).

On peut remarquer que cette fonction est impaire (graphe symétrique par rapport à l'origine) et faire l'étude que pour les valeurs positives. De plus, on peut donc prolonger f par continuité à l'origine en posant f(0) = 0.

La dérivée de f est égale à : $f'(x) = \frac{2x^2 - (1 + x^2)Ln(1 + x^2)}{x^2(1 + x^2)}$ et elle est nulle quand son

numérateur est nul ou encore 2(t-1) - tLnt = 0 en posant $t = 1 + x^2$, $t \ge 1$.

Soit z(t) = 2(t-1) - tLnt = 0, z'(t) = 1 - Lnt qui est nulle pour t = e.

On trouve z(e) = e - 2 > 0 et par exemple $z(e^2) = -2 < 0$. D'après le théorème des valeurs intermédiaires, il existe une unique valeur t_0 dans l'intervalle $]e,e^2$ [qui annule z(t).

Soit $x_0 = \sqrt{t_0 - 1}$. La fonction z est croissante sur l'intervalle $]0, x_0[$ et décroissante ensuite.

La fonction f est croissante sur l'intervalle $[0, \sqrt{e-1}]$, puis décroissante. D'autre part, $\lim_{x\to +\infty} f(x) = 0$ et la pente à l'origine est donnée par $\lim_{x\to 0} \frac{f(x) - f(0)}{x} = 0$

2. Calculer $I = \int_{0}^{1} x^{2} f(x) dx$. On calcule par intégration par parties.

$$I = \int_{0}^{1} x Ln(1+x^{2}) dx = \left[\frac{x^{2}}{2} Ln(1+x^{2})\right]_{0}^{1} - \int_{0}^{1} \frac{x^{3}}{1+x^{2}} dx = Ln\sqrt{2} - \int_{0}^{1} (x - \frac{x}{1+x^{2}}) dx$$

1

$$I = Ln\sqrt{2} - \left[\frac{x^2}{2} - \frac{1}{2}Ln(1+x^2)\right]_0^1 = Ln2 - \frac{1}{2}$$

3. Soit la suite (u_n) définie par : $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n strictement positif.

Etudier la convergence de cette suite et calculer sa limite, si elle existe.

On vérifie facilement par récurrence que la suite est strictement positive.

On a : $u_{n+1} - u_n = \frac{Ln(1 + u_n^2) - u_n^2}{u_n} < 0$. La suite est décroissante et minorée, donc convergente vers une limite l solution de l'équation : l = f(l), car f est continue, avec son prolongement par continuité en 0, d'où l = 0

Exercice nº 2

1. Déterminer les valeurs de α et β pour lesquelles l'intégrale suivante est convergente :

$$\int_{0}^{1} \frac{\left|Ln x\right|^{\beta}}{\left(1-x\right)^{\alpha}} dx .$$

Cette intégrale présente un problème en zéro pour le numérateur et un problème en 1 pour le dénominateur. $\int_{0}^{1/2} \frac{\left|Ln\,x\right|^{\beta}}{\left(1-x\right)^{\alpha}} dx \text{ est convergente en 0 pour tout } \beta \text{ et en 1, } Ln\,x \approx x-1 \text{ est convergente en 1 pour } \alpha < \beta + 1$

2. En déduire que $I = \int_{0}^{1} \frac{Ln x}{\sqrt{(1-x)}} dx$ est convergente et calculer I.

L'intégrale est convergente d'après la question précédente. On pose $t=\sqrt{1-x}$, $I=2\int\limits_0^1 Ln(1-t^2)\,dt=2\int\limits_0^1 Ln(1-t)\,dt+2\int\limits_0^1 Ln(1+t)\,dt$, puis en posant u=1-t dans la première intégrale et u=1+t dans la deuxième intégrale, on obtient $I=4(Ln\,2-1)$

Une primitive de *Lnx* est *xLnx-x*.

Exercice n° 3

1. Etudier la convergence de la suite (u_n) de terme général $u_n = \int_{1}^{e} x (Lnx)^n dx$

Solution : $u_{n+1} - u_n = \int_1^e x(Lnx)^n (Lnx - 1) dx < 0$. La suite est décroissante et minorée par zéro, donc elle converge.

2. Etudier la convergence de la suite (v_n) de terme général $v_n = \int_0^1 x^n Ln(x+1)dx$

 $v_{n+1} - v_n = \int_0^1 x^n (x-1) Ln(x+1) dx < 0$ et la suite est décroissante, minorée par zéro, elle

converge. On a, par intégration par parties : $v_n = \frac{Ln2}{n+1} - \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx$ qui tend vers zéro.

Exercice n° 4

Soient $E = C^1(R, R)$ et $F = \{ f \in E / f(0) = f'(0) = 0 \}$.

- 1. Montrer que *F* est un sous espace vectoriel de *E*. Evident.
- 2. Déterminer un supplémentaire G de F dans E. Les fonctions h de E qui ne sont pas dans F vérifient $h(0) \neq 0$ ou $h'(0) \neq 0$. Par exemple les fonctions constantes et les applications linéaires sont ainsi.

Soit $G = \{ f \in E \mid f(x) = ax + b \}$. Montrons que G est un supplémentaire de F.

Soit $f \in F \cap G$, alors f(x) = ax + b, f(0) = b, et f'(0) = a. Donc a = b = 0 (car $f \in F$) et l'intersection est réduite à zéro.

Soit $h \in E$, on pose : f(x) = h(x) - h(0) - h'(0)x et $f \in F$. Et la fonction g(x) = h(0) + h'(0)x appartient à G et h = f + g.

L'espace G est engendré par les fonctions $e_1(x) = 1$ et $e_2(x) = x$ et donc G est de dimension 2.

3. Soit la fonction h définie par : $h(x) = x^2 + x + 1$. Quelle est sa projection orthogonale sur G?

On peut se restreindre à l'espace vectoriel des fonctions du second degré et naturellement la projection de h sur G est la fonction x+1 (on peut le vérifier avec la matrice de la projection orthogonale sur G).

3

Exercice n° 5

Soient $f_n(x) = \int_0^x (1 - t^2)^n dt$ et $F_n(x) = \int_0^x \frac{f_n(t)}{f_n(1)} dt$ où n est un entier naturel et x un nombre réel strictement positif.

1. Calculer $f_n(1)$

$$f_n(1) = \left[t(1-t^2)^n\right]_0^1 + 2n\int_0^1 t^2 (1-t^2)^{n-1} dt = -2n f_n(1) + 2n f_{n-1}(1)$$

Et
$$f_n(1) = \frac{2n}{2n+1} f_{n-1}(1)$$
 et on obtient : $f_n(1) = \frac{(2^n n!)^2}{(2n+1)!}$

2. Montrer que
$$\int_{0}^{1} (f_n(1) - f_n(t)) dt = \frac{1}{2(n+1)}$$

$$\int_{0}^{1} (f_n(1) - f_n(t)) dt = \int_{0}^{1} \int_{t}^{1} (1 - x^2)^n dx dt = \frac{1}{2} \sum_{k} C_n^k \frac{(-1)^k}{k+1} \text{ et } \int_{0}^{1} (1 - x)^n dx = \frac{1}{(n+1)} = \sum_{k} C_n^k \frac{(-1)^k}{k+1}$$

En conclusion
$$\int_{0}^{1} (f_{n}(1) - f_{n}(t)) dt = \frac{1}{2(n+1)}$$

3. Etudier la suite (u_n) définie par : $u_n = 1 - F_n(1)$

$$u_n = \int_0^1 \frac{f_n(1) - f_n(t)}{f_n(1)} dt = \frac{1}{f_n(1)} \times \frac{1}{2(n+1)}$$

On vérifie que $u_{n+1} = \frac{2n+3}{2n+4}u_n$ et la suite est décroissante et minorée par zéro, donc elle converge.

Exercice nº 6

Soit *A* une partie non vide de R^2 et $a \in A$. On pose, $T(A,a) = \left\{ u \in R^2 / \exists (x_n) \in A, \exists \lambda_n > 0, x_n \to a, \lambda_n (x_n - a) \to u \right\}$

1. Montrer que $(0,0) \in T(A,a)$

Il suffit de prendre $x_n = a$ et $\lambda_n = 1$.

2. Montrer que T(A,a) est un ensemble est stable par homothétie positive.

Soit $u \in T(A, a)$, $\forall \mu > 0$, $\mu \lambda_n(x_n - a) \to \mu u$ et $\mu u \in T(A, a)$, donc cet ensemble est stable par homothétie positive.

3. Montrer que T(A,a) est un ensemble fermé de \mathbb{R}^2 .

Soit u^i une suite de points de T(A,a) et $u = \underset{i}{lim} u^i$. Comme $u^i \in T(A,a)$, $\exists \lambda_{pi}^i > 0$, $\exists x_{pi}^i \in A, x_{pi}^i \rightarrow a$,

$$\lambda_{pi}^{i}(x_{pi}^{i}-a) \rightarrow u^{i}$$
. Pour tout n , $\exists k_{n} > 0$ tel que $\left|\lambda_{kn}^{n}(x_{kn}^{n}-a)-u^{n}\right| < \frac{1}{n}$ et alors $x_{kn}^{n} \rightarrow a$, $\lambda_{kn}^{n}(x_{kn}^{n}-a) \rightarrow u$ et $u \in T(A,a)$, ce qui montre que $T(A,a)$ est un ensemble fermé de R^{2} .

4. Montrer que T(A,a) est un ensemble convexe de R^2 si A est une partie convexe

$$\begin{split} &\exists (u_n) \in A, \, \exists \lambda_n > 0, \, u_n \to a, \, \lambda_n(u_n - a) \to u \\ &\exists (v_n) \in A, \, \exists \, \alpha_n > 0, \, v_n \to a, \, \alpha_n(v_n - a) \to v \, \text{ et} \\ &\lambda \, \lambda_n(u_n - a) + (1 - \lambda)\alpha_n(v_n - a) \to \lambda u + (1 - \lambda)v \, . \end{split}$$

Par ailleurs,

$$\lambda \lambda_n (u_n - a) + (1 - \lambda)\alpha_n (v_n - a) = (\lambda \lambda_n + (1 - \lambda)\alpha_n)(\frac{\lambda \lambda_n u_n + (1 - \lambda)\alpha_n v_n}{\lambda \lambda_n + (1 - \lambda)\alpha_n} - a) \text{ ou encore,}$$

$$\lambda \lambda_n (u_n - a) + (1 - \lambda)\alpha_n (v_n - a) = \beta_n (w_n - a) \text{ avec}$$

$$\beta_n (w_n - a) \to \lambda u + (1 - \lambda)v,$$

 $w_n \in A$, car A est une partie convexe de R^2 ,

$$w_n = \frac{\lambda \lambda_n u_n + (1 - \lambda)\alpha_n v_n}{\lambda \lambda_n + (1 - \lambda)\alpha_n} \to a \quad \text{car } \|w_n - a\| \le Max(\|u_n - a\|, \|v_n - a\|).$$

En conclusion $\lambda u + (1 - \lambda)v \in T(A, a)$

5. Soit $A = R^+ \times R^+$, expliciter T(A, a) pour a = (0, 0).

On vérifie facilement que $T(A,a) = R^+ \times R^+$

6. Soit
$$A = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, y \ge x^2, x \ge y^2\}$$
, expliciter $T(A, a)$ pour $a = (0, 0)$.
Soit $u = (x, y) \in T(A, a)$,
 $\exists (x_n, y_n) \in A, \exists \lambda_n > 0, x_n \ge 0, y_n \ge 0, y_n \ge x_n^2, x_n \ge y_n^2, \lambda_n x_n \to x, \lambda_n y_n \to y$

En multipliant par λ_n les inégalités, on obtient :

 $y_n \ge x_n^2 \Rightarrow \lambda_n \, (y_n - x_n^2) \ge 0 \Rightarrow \lambda_n \, y_n - \lambda_n x_n \, x_n \ge 0$ et par passage à la limite, $y \ge 0$. De même, $x \ge 0$. On a donc $T(A,a) \subset R^+ \times R^+$. Réciproquement, on pose, pour $(x,y) \in R^+ \times R^+$, $x_n = x/n, y_n = y/n, \lambda_n = n$ et on vérifie que cette suite (x_n, y_n) appartient à l'ensemble A pour n grand.