University of Technologies and Solutions Integrator

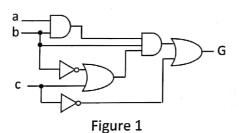
Epreuve de :
ELECTRONIQUE ANALOGIQUE
& NUMERIQUE

BTS BLANC N°1 (28.04.2022) / 8h - 12h

Année académique : 2021 - 2022
Filière : RIT
Durée : 4 heures
Coefficient : 2

SJUET D'ELECTRONIQUE NUMERIQUE

Exercice 1


Convertir vers les autres indications manquantes :

Décimal	Hexadécimal	Octal	Binaire pur	BCD	Excédent 3
		637			
896					
		9		1001 0101 0110	

Exercice 2

1- Pour chaque figure, donner l'expression de la sortie. La simplifier puis réaliser de nouveau son

logigramme

b H

Figure 2

- 2- Soit le logigramme (figure 3 ci-contre)
 - 2.1- Donner l'expression de :
 - A en fonction de x et y.
 - B en fonction de A et z.
 - C en fonction de A, B.

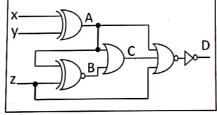
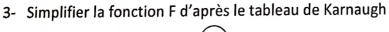
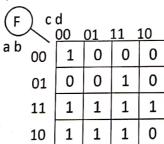
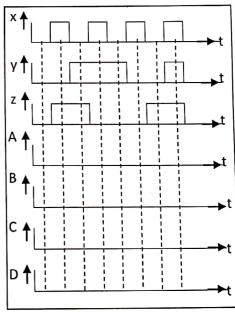
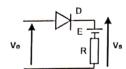





Figure 3

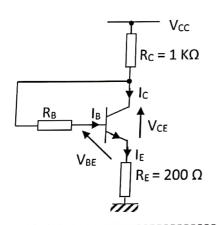
- 2.1- Montrer que D = C + z
- 2.3- Reproduire et compléter les chronogramme de A, B, C et D.



SJUET D'ELECTRONIQUE ANALOGIQUE

Exercice 1

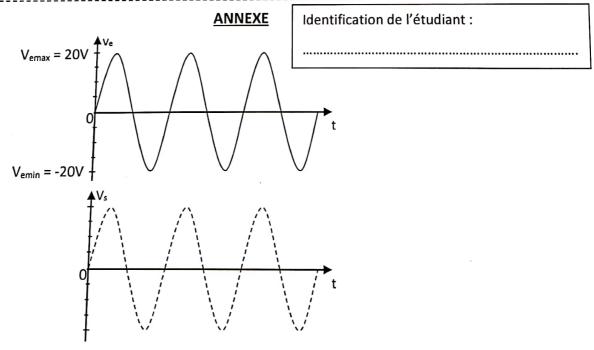
On donne le schéma suivant :



La diode D est supposée idéale et la tension continue E = 5V

- 1- Quelle est la condition sur v_e qui rend la diode passante ? Déduire la condition sur ve quand rend la diode bloquée.
- 2- Dessiner le schéma équivalent du montage lorsque la diode est passante.
- 3- Donner l'expression de v_{s} en fonction de v_{e} lorsque la diode est passante.
- 4- Dessiner le schéma équivalent du montage lorsque la diode est bloquée.
- 5- Que vaut v₅ lorsque la diode est bloquée ?
- 6- Détacher l'annexe en bas de la feuille et tracer le chronogramme de v₅ sachant celui de ve.

Exercice 2


Soit le montage de polarisation du transistor ci-dessous :

On donne V_{CC} = 12 V, V_{BE} = V_{BE0} = 0,6 V et $\beta\,$ = 150.

On veut avoir $V_{CE0} = \frac{V_{CC}}{2}$ et $V_{R_E} = \frac{V_{R_C}}{5}$ où V_{R_E} et V_{R_C} sont respectivement les tensions aux bornes de R_E et R_C.

- 1. Calculer le courant Ico, puis déduire IBO.
- 2. Calculer la valeur de RB.

