<u>LYCEE TECHNIQUE O . CHATTI M'SAKEN</u> <u>PROF : MR : BAHLOUL RIDHA</u>

DEVOIR DE SYNTHESE N°2

Classe: 4 éme MATH

Le 26 / 03 / 2016

Durée 4 H

EXERCICE N° 1:

Soit (o, \vec{i} , \vec{j}) un repère orthonormé direct du plan. Soit **E** la courbe d'équation :

$$(E): 12 x^2 + 16 y^2 + 12 x - 9 = 0$$

- 1) a) Montrer que (E) est une ellipse. Préciser son excentricité, son centre et ses sommets et vérifier que O est l'un de ses foyers.
 - **b)** Tracer (**E**) dans le repère ($0, \vec{i}, \vec{j}$)
 - c) Vérifier que le point A (-1, $\frac{3}{4}$) appartient à (E) et déterminer une équation de la tangente à (E) en A.
- 2) Soit $\mathbf{M} \in (\mathbf{E})$. On pose $(\vec{i}, \overrightarrow{OM}) \equiv \alpha [2\pi]$ et $\mathbf{OM} = \mathbf{r}$. Montrer que : $\mathbf{r} = \frac{3}{2(2+\cos\alpha)}$
- 3) La droite (OM) recoupe (E) en un point N. Montrer que : $MN = \frac{6}{4-\cos^2 \alpha}$.
- 4) Déterminer les valeurs de α pour lesquelles **MN** est minimale.

EXERCICE N° 2:

- 1) a) Montrer que : $\forall n \in \mathbb{N}$, $4^n \equiv 1 \pmod{3}$.
 - b) Montrer que : $4^{28} \equiv 1 \pmod{29}$.
 - c) Déterminer suivant les valeurs de l'entier naturel n le reste modulo 17 de 4 n.
 - d) Déterminer alors trois diviseurs premiers de 4 28 1.
- 2) Soit x un entier vérifiant : $x^{35} \equiv 2 \pmod{97}$.
 - a) Montrer que ${\bf x}$ et ${\bf 97}$ sont premiers entre eux.
 - b) Justifier que : $x^{96} \equiv 1 \pmod{97}$. En déduire que : $x \equiv 2^{11} \pmod{97}$.
 - c) Quel est le reste modulo 97 de x?
- 3) Pour tout entier naturel on pose $S_n = 1 + 5 + 5^2 + \dots + 5^n$.
 - a) Déterminer suivant les valeurs de l'entier naturel n le reste modulo 7 de 5 n.
 - **b)** Montrer que : $4 S_n = 5^{n+1} 1$.
 - c) Montrer que : $4S_n \equiv a \pmod{7} \Leftrightarrow S_n \equiv 2a \pmod{7}$.
 - d) Déterminer alors le reste modulo 7 de S 2015.

<u>Page 1/3</u>

EXERCICE N°3:

Soit **ABCDEFGH** un cube d'arête **1** . On désigne par **P** le centre de gravité du triangle **HGF** et **Q** le centre de gravité du triangle **FBG** et on muni l'espace du repère orthonormé direct

(A ,
$$\overrightarrow{AB}$$
 , \overrightarrow{AD} , \overrightarrow{AE}).

- 1) a) Donner une représentation paramétrique de la droite (BH).
 - b) Montrer qu'une équation cartésienne du plan (ACF) est : -x + y + z = 0.
 - c) Déterminer les points W de la droite (BH) tel que le volume du tétraèdre ACFW est égale à $\frac{11}{6}$.
- 2) Soit K le milieu de [FG] et h l'homothétie de centre K et de rapport $\frac{1}{3}$.
 - a) Montrer que : h(H) = Peth(B) = Q.
 - b) Donner l'expression analytique de l'homothétie h.
- 3) Soit le plan R: -x + y + z $\frac{1}{3}$ = 0.
 - a) Montrer que l'image du plan (ACF) par h est le plan R.
 - b) Vérifier que la droite (BH) est perpendiculaire au plan (ACF) et déterminer les coordonnées de leur point d'intersection N.
 - c) En déduire que le plan R est perpendiculaire à la droite (PQ) en un point N' que l'on déterminera.
- 4) Soit S l'ensemble des points M (x, y, z) tel que : $x^2 + y^2 + z^2 + 4x 6y + 2z + 5 = 0$.
 - a) Montrer que S est une sphère dont on précisera le centre I et le rayon R.
 - b) Etudier la position relative de S et le plan (ACF) .
 - c) Déterminer S' = h (S) et en déduire la position relative de S' et le plan R.

EXERCICE N° 4: Soit f la fonction définie par : $f(x) = x \sqrt{e^{\frac{2}{x}} - 1}$.

- 1) Vérifier que le domaine de définition de f est] 0, +∞ [.
- 2) Soit g la fonction définie sur]0, $+\infty$ [par : $g(x) = 1 x e^{-2x}$.
 - a) Etudier les variations de g.
 - b) En déduire que l'équation g (x) = 0 admet une solution unique $\alpha \in]0.79$, 0.8 [.
 - c) En déduire le signe de g (x).
- 3) a) Montrer que : $\binom{lim}{0^+}$ f = $+\infty$ et $\binom{lim}{+\infty}$ f = $+\infty$.(on pourra poser X = $\frac{2}{x}$).
 - **b)** Vérifier que **f** ' (**x**) = $\frac{e^{\frac{2}{x}}g(\frac{1}{x})}{\sqrt{e^{\frac{2}{x}}-1}}$ et que **f** ($\frac{1}{\alpha}$) = $\sqrt{\frac{1}{\alpha-\alpha^2}}$.
 - c) Dresser le tableau de variation de f.
- 4) a) Etudier la position relative de la courbe (φ) de f et la droite Δ : y = x.
 - **b)** Etudier la branche à l'infini de (φ) et tracer (φ) et la droite Δ dans un repère orthonormée (0, \vec{i} , \vec{j}).
- 5) Soit h la restriction de f à l'intervalle $I = \frac{1}{a}$, + ∞ [.
 - a) Montrer que h réalise une bijection de I sur un intervalle J que l'on déterminera.
 - **b)** Tracer la courbe de h^{-1} dans le même repère ($0, \vec{i}, \vec{j}$).
- 6) Soit U la suite réelle définie par : $U_0 = 4$ et $U_{n+1} = f$ (U_n), $n \in IN$.
 - a) Montrer que : $\forall n \in \mathbb{N}$, on a : $\frac{2}{\ln 2} \leq U_n \leq 4$.
 - **b)** Etudier la monotonie de la suite **U**. En déduire que **U** est convergente et calculer sa limite.

<u>Page 2/3</u>

EXERCICE N° 5 :

Soit $n \in IN^*$ et F_n la fonction définie sur] 0 , $+\infty$ [par : F_n (x) = $\int_1^x \frac{e^t}{t^n} dt$.

- 1) Montrer que : \forall $\mathbf{n} \in \mathbb{N}^{+}$; \mathbf{F}_{n} est strictement croissante sur] $\mathbf{0}$, $+\infty$ [.
- 2) a) Montrer que : si $1 \le t \le x$ alors $\frac{e^t}{x^n} \le \frac{e^t}{t^n} \le e^t$. b) En déduire que : $\forall x \ge 1$ on a : $\frac{e^x e}{x^n} \le F_n(x) \le e^x e$.

 - c) Calculer alors: $\lim_{+\infty}^{l \, i \, m} \mathbf{F}_n$ et $\lim_{x \to +\infty}^{l \, i \, m} \frac{F_n(x)}{x}$.
- 3) a) Montrer que : si $0 < t \le 1$ alors $\frac{1}{t} \le \frac{e^t}{t^n}$.
 - **b)** En déduire que : $\forall x \in]0,1]$ on a : $F_n(x) \leq ln(x)$. En déduire $lim_{0^+} F_n$.
- 4) a) Montrer que F_n réalise une bijection de] 0, +∞ [sur IR.
 - b) Etudier la dérivabilité de F_n^{-1} sur IR et calculer (F_n^{-1})' (0).
- 5) Pour tout entier naturel n on pose : $V_n = F_n$ (ln 3).
 - a) Montrer que : $\forall n \in \mathbb{N}$, on a : $0 \le V_n \le \frac{3}{n-1} \left(1 \frac{1}{(\ln 3)^{n-1}}\right)$.
 - b) Calculer alors la limite de la suite V.
 - c) Montrer en faisant une intégration par parties sur V n que :

$$\forall n \geq 2 \ on \ a : V_n - n \ V_{n+1} = \frac{3}{(\ln 3)^n} - e.$$

d) Calculer alors: $l_{n \to +\infty}^{l m} (n+1) V_{n+1}$.

BON TRAVAIL

Page 3/3

