

COLLEGE SAINTE FOI	DEVOIR SURVEILLE DE	ANNEE: 2020 - 2021
CLASSES : TB	MATHEMATIQUES	DUREE: 2H30

EXERCICE 1

Une mini-entreprise *Junior Achievement* a mis au point un nouveau produit ''Gadget'' et cherche à en fixer le prix de vente. Pour cela, une enquête est réalisée auprès des clients potentiels. Les résultats sont donnés dans le tableau suivant :

x_i	30	40	50	60	70	80	90	100
y_i	420	360	300	240	180	120	60	3

Où y_i désigne le nombre d'exemplaires du produit que les clients sont disposés à acheter si le prix de vente exprimé en milliers de francs est x_i .

1- Représenter le nuage de points correspondant à cette série statistique.

Echelle: En abscisses 1 cm pour 10 000F

En ordonnées 1 cm pour 30 exemplaires de produit

On prendra comme coordonnées de l'origine du repère (10 000,3)

2- Faire le tableau de calcul

Dans la suite de l'exercice les résultats des calculs seront donnés à 10⁻³ près

- 3- Calculer les coordonnées du point moyen G du nuage de points puis le placer dans le repère.
- 4- a) Calculer la variance de x et la covariance de y
 - b) Calculer la covariance entre x et y.
- 5- Déduire le coefficient de corrélation linéaire r. La valeur obtenue justifie t elle la recherche d'un ajustement linéaire ?
- 6- Déterminer une équation de la droite de régression de y en x par la méthode des moindres carrés.
- 7- Les frais de conception du produit se sont élevés à 50 000 F. Le prix de fabrication de chaque exemplaire est de 225 F. Démontrer que le bénéfice z en fonction du prix de vente x est donné par l'égalité : $z = -5,975x^2 + 600,094x 184,719$, où x et z sont exprimés en milliers de francs.
- 8- Déterminer le prix de vente x permettant de réaliser le bénéfice maximum et calculer ce bénéfice.

PROBLEME

Partie A

On considère la fonction g définie sur l'intervalle $]0 ;+ \infty[$ par :

$$g(x)=2x^3-1+2lnx.$$

- 1- a) Calculer les limites de g aux bornes de son ensemble de définition D_g .
 - b) Etudier les variations de g sur l'intervalle $[0;+\infty[$.
 - c) Dresser son tableau de variation.
- 2- a) Démontrer que l'équation g(x) = 0 admet une unique solution α dans $[0;+\infty[$.
 - b) Justifier que : $0.86 < \alpha < 0.87$.
- 3- Justifier que : $\forall x \in]0; \alpha[, g(x) < 0]$

$$\forall x \in]\alpha; +\infty[, q(x) > 0.$$

Partie B

On considère la fonction f définie sur]0; $+\infty[$ par : $f(x) = 2x - \frac{\ln x}{x^2}$.

On note (C) la courbe représentative de f dans le plan muni d'un repère orthogonal (O, I, J), unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1- a) Calculer la limite de f en 0, puis interpréter graphiquement le résultat.
 - b) Calculer la limite de f en $+\infty$.
- 2- a) Démontrer que la droite (Δ) d'équation y = 2x est asymptote à la courbe (C) en + ∞ .
 - b) Etudier la position relative de la courbe (C) et la droite (Δ).

- 3- On admet que f est dérivable sur $]0;+\infty[$.
 - a) Démontrer que $\forall x \in]0; +\infty[, f'(x) = \frac{g(x)}{x^3}]$.
 - b) Etudier les variations de f, puis dresser son tableau de variation.
 - c) En utilisant la question 2-a) de la partie A, démontrer que $f(\alpha) = \frac{6\alpha^3 1}{2\alpha^2}$ puis donner l'arrondi d'ordre 1 de $f(\alpha)$ en prenant $\alpha = 0,86$.
- 4- Soit h la restriction de f à l'intervalle [1; $+\infty$ [.
 - a) Démontrer que h est une bijection de $[1; +\infty[$ dans un intervalle K à déterminer.
 - b) Soit h^{-1} la bijection réciproque de h.

 Donner le sens de variation de h^{-1} puis dresser son tableau de variation.
- 5- Tracer la droite (Δ), la courbe (C) de f puis la courbe ($C_{h^{-1}}$) de h^{-1} .