
DOCUMENTATION

4538

Double monostable de précision

Le composant permet de générer une impulsion de durée calibrée par 2 composants externes (Rx et Cx) à partir d'un front actif en entrée.

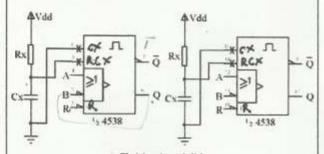


Table de vérité

1	ntrée	s	Sor	ties	
R	Λ	В	Q	Q	H : état logique haut
L	X	X	L	H	L : état logique bas
X	11	X	1.	H	: front descendant
X	X	L	L	11	front montant
H	L	1	1	T	X : état indifférent
11	1	11	7.	T	impulsions

Durée de l'impulsion générée : Ti (seconde) = (Rx) x (Cx)

Nota: le 4538 est un monostable redéclenchable.

Il est cependant possible de le faire fonctionner en mode monocoup :

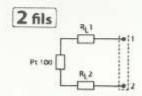
en reliant l'entrée A à la sortie Q
 ou - en reliant l'entrée B à la sortie Q

Fomesoutra.com ça soutra Docs à portée de main

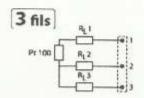
Bac F2	Etude d'un Système Technique	
Session 2014	Documentation Electronique	Page CAN1 sur 4

SONDE DE TEMPÉRATURE PT100

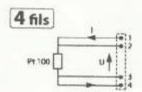
thermométrie


par résistance platine

Docs à portée de main


La sonde PT100 est constituée d'un filament de Platine (Pt), entourant une tige de verre ou non, dont la caractéristique est de changer de résistance en fonction de la température. Leur résistance est de 1000hm pour 0°C, elle augmente en fonction de la température. Il en existe de plusieurs tailles et formes en fonction de l'utilisation

Le montage


le plus simple

C'est la méthode de mesure la plus simple, mais les résistances de lignes (RL1 et RL2) sont en serie avec l'élément sensible Pt 100. L'erreur correspond à RL1 + RL2, d'où un décalage de la température mesurée et de la température réelle. C'est le montage à éviter.

le plus utilisé

Ce montage implique des résistances de lignes RL1-RL2-RL3 identiques. RL2+RL3 permettent de mesurer la résistance de lignes que l'on va soustraire à ce qui est mesuré aux bornes 1 et 2.

le plus précis

On fait passer un courant constant par les bornes 1 et 4 et l'on mesure directement la tension aux bornes de l'élément sensible Pt 100, ce qui permet complètement de s'affranchir des résistances de lignes.

Précautions

La section du cable de raccordement doit être choisie en fonction, de sa longueur et de l'appareillage de mesure utilisé qui defini les résistances de lianes maximales Afmissibles Dans le cas où l'appareillage de mesure ne peut pas com penser la résistance de liane. il est conseille d'utiliser des convertisseurs de mesure. Il est souhaitable de raccorder le Pt 100 avec un cable blinde. Le courant de mesure traversant un element de Pt 100 ne doit pas être supérieur à ImApour limiter l'auto-echauffement. Une sonde utilisée dans un liquide doit être immergee à une profondeur d'au moins dix fois son diamètre pour éviter les effets radiateurs au influeraient sur la mesure.

CONVERTISSEUR DE TEMPÉRATURE PXT-10/11

Le convertisseur PXT-10/11 permet de convertir une température mesurée par une sonde PT100 ou PT1000 en un signal analogique de type tension ou courant continu **proportionnel** à la température.

Entrée : sonde PT100 ou PT1000, 2 ou 3 fils avec compensation de la résistance du câble de connexion

Gamme de température : -50℃/+300℃ ou -50℃/+100℃ Sortie : 4-20mA DC ou 0-20mA DC ou 0-10V DC

Référence suivant la version choisie :

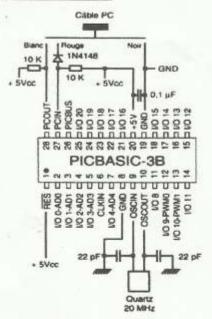
Type:	DVT 40 I	PXT-10	924
Temperature converter Pt100 Temperature converter Pt1000	PXT-10 PXT-11		
Supply Voltage	- Compression		
24V DC	924		
24V AC	024		
115V AC	115		
230V AC	230		

Réglage du mode de fonctionnement :

Deux commutateurs placés en face avant permettent de sélectionner la gamme de température ainsi que le type de signal désiré en sortie

Bac F2	Etude d'un Système Technique	Danie CAND 4
Session 2014	Documentation Electronique	Page CAN2 sur 4

PICBASIC (COMFILE Technology) 1/2


Les PICBASICs sont de petits modules hybrides destinés à prendre place au cœur des application afin d'assurer la gestion des informations. Ils se composent d'un microcontrôleur associé à une mémoire non volatile (EEPROM OU FLASH), d'une RAM et se programment en langage BASIC par l'intermédiaire d'un ordinateur et d'un logiciel de développement.

Aperçu de la gamme :

	PB-1B	PB-1S	PB-2S	PB-2H	PB-3B	PB-3H	PBM- R1	PBM- R5
Gamme	PB	PB	PB	PB	PB	PB	PBM	PBM
Mémoire Prog.	2Ko EEPROM	4Ko EEPROM	8Ko EEPROM	16Ko EEPROM	4Ko FLASH	4Ko FLASH	64Ko FLASH	64Ko FLASH
Mémoire RAM	96 octets	96 octets	96 octets	96 octets	80 octets	80 octets	8Ko	32Ko
CPU	PIC 16C73	PIC 16C73	PIC 16C74	PIC 16C74	PIC 16F876	PIC 16F877	PIC 16F877	PIC 16F877
Fréq quartz	4.19Mhz	4.19Mhz	4.19Mhz	20Mhz	20Mhz	20Mhz	20Mhz	20Mhz
EEPROM données							8Ko	32Ko
Boîtier	SIL22	SIL22	DIL34	DIL34	DIL28	DIL40	DIL40	DIL40
CAN résolution	5 (8 bits)	5 (8 bits)	8 (8 bits)	8 (8 bits)	5 (10 bits)	8 (10 bits)	8 (10 bits)	8(10 bits) 2(12 bits)
Sortie PWM	2 (8 bits)	2 (8 bits)	2 (8 bits)	2 (8 bits)	2 (8 bits)	2 (8 bits)	2 (10 bits)	2 (10 bits)
Buffer RS232							Dispo	Dispo
Horloge RTC			Fom	esout	Com			Dispo

Docs à portée de main

Brochage du PICBASIC-3B :

Broche	Désignation	Bloc	Fonction
1	RES		reset
2 3 4 5	I/O 0-AD0 I/O 1-AD1 I/O 2-AD2 I/O 3-AD3	PRE-	E/S OU CAN E/S OU CAN E/S OU CAN E/S OU CAN
6	CLKIN	- mb	entres de comptage
7	VO 4-AD4	eni	E/S ou CAN
8 9 10	GND OSCIN OSCOUT		masse Quartz Quartz
11 12 13 14 15 16 17	I/O 8 I/O 9-PWM0 I/O 10-PWM1 I/O 11 I/O 12 I/O 13 I/O 14 I/O 15	I will I will I will I will I will I will I will	E/S OU PWM E/S OU PWM E/S OU PWM E/S E/S E/S E/S
19 20	GND +5Vcc		masse alimentation
21 22 23 24 25	VO 16 VO 17 VO 18 VO 19 VO 20	(63) (64) (63) (63)	E/S E/S E/S E/S E/S
26	PICBUS		Cite afficieur sèrre
27 28	PCIN PCOUT		Communication PC Communication PC

E/S: Entrée / Sortie CAN: Convertisseur Analogique Numérique

PWM : Signal rectangulaire de rapport cyclique variable

Bac F2	Etude d'un Système Technique	0. 61112 /
Session 2014	Documentation Electronique	Page CAN3 sur 4

PICBASIC (COMFILE Technology) 2/2

Utilisation des E/S en entrée :

Lorsqu'une E/S est utilisée en entrée, il faut veiller à ce que la tension présente sur cette entrée soit toujours comprise entre 0V et +5V sous peine de détruire le composant.

Commande de dispositifs externes :

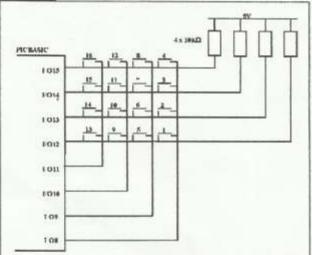
Chaque entrée/sortie (I/O) des modules PICBASIC peut piloter lorsqu'elle est utilisée en sortie un dispositif dont la consommation ne doit pas dépasser 25mA. Il est ainsi très facile de commander directement une led comme indiquer sur les schémas ci-contre, la tension de sortie au NLO étant de 0V et au NL1 de +5V.

Si la consommation dépasse 25mA, un transistor doit être utilisé pour amplifier le courant de sortie.

Instruction ADIN (conversion analogique numérique) :

Syntaxe: ADIN (port)

Cette instruction permet de convertir une tension analogique comprise entre 0V et +5V en une valeur numérique comprise entre 0 et 1023. Le paramètre (port) indique le n° de l'I/O recevant la tension à convertir.


Exemple: R = ADIN(3) => cette ligne de programme convertit la tension analogique présente sur la sortie I/O3 en une valeur comprise entre 0 et 1023 et transfère le résultat dans la variable R.

Instruction PADIN (gestion d'un clavier matriciel 16 touches) ;

Syntaxe: PADIN(1)

Cette instruction permet de gérer automatiquement un clavier 16 touches de type matriciel connecté comme ci-contre (les colonnes entre I/O8 et I/O11 et les lignes entre I/O12 et I/O15). En exécutant l'instruction PADIN, une scrutation des 16 touches sera effectuée automatiquement et retournera le numéro de la touche appuyée. Si plusieurs touches sont appuyées simultanément, seul le numéro le plus petit sera retourné. Si aucune touche n'est appuyé alors la valeur 0 sera retournée.

Exemple: R = PADIN(1) => cette ligne de programme affecte à la variable R le n° de la touche appuyée.

LED KR5005S (STANLEY)

Les leds KR5005S sont de diamètre 5mm, de couleur rouge, de haute intensité lumineuse avec un angle de diffusion de 25°. Le courant nominal de fonction nement est de 20mA.

Valeurs caractéristiques maximales:

Puissance dissipée	Pd	125mW
Courant en direct	lf	50mA
Tension en inverse	Vr	4V
Température d'utilisation	Тор	-35 à +85℃

Caractéristiques optiques:

	typique	max
Luninosité à If=20mA	200mcd	300mcd
Tension en direct à If=20mA	1,8V	2,5V
Courant en inverse à Vr=4V		100µA

Bac F2	Etude d'un Système Technique	Dana CANIA aur A	
Session 2014	Documentation Electronique	Page CAN4 sur 4	