
MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

2^{nde} A
MATHEMATIQUES

Durée : 6 heures

Code:

COMPETENCE 2

Traiter une situation relative à la modélisation de phénomènes aléatoires, à l'organisation et aux traitements des données

THEME 2

Organisation et traitements des données

Leçon 7 : STATISTIQUE

A. SITUATION D'APPRENTISSAGE

Un professeur de mathématiques dans un lycée veut récompenser la classe de 2^{nde} A qu'il tient à condition que la moitié des élèves ait une moyenne annuelle en mathématiques soit supérieure ou égale à 13 sur 20. Le professeur fournit les moyennes annuelles en mathématiques des élèves de la classe dans le tableau ci-dessous :

Moyennes annuelles en mathématiques	[6;8[[8;10[[10;12[[12;14[[14;16[
Effectifs	05		18	15	10

Pour savoir s'ils peuvent avoir la récompense proposée par leur professeur, les élèves cherchent à approfondir leur connaissance sur les effectifs les effectifs cumulés.

B. CONTENU DE LA LECON

1. Effectifs cumulés décroissants – fréquences cumulées décroissantes

Dans cette partie, on suppose que les séries statistiques étudiées sont à caractères quantitatifs.

1 Effectifs cumulés décroissants

Définition

L'effectif cumulé décroissant d'une modalité est la somme des effectifs des modalités supérieures ou égales à cette modalité.

Exemple:

Modalité	12	14	15	16	17	Total
Effectifs	1	5	19	17	8	50
Effectifs cumulés décroissants	50	49	44	25	8	

Exercice de fixation

Complète par VRAI ou par FAUX, les propositions suivantes :

Dans le tableau des effectifs cumulés décroissants, le premier effectif cumulé décroissant est égal à :

a.	Effectif	du	mode						

- c. Effectif total.....
- d. La moitié de l'effectif total.....

Solution

- a. FAUX
- b. FAUX
- c. VRAI
- d. FAUX

2 Fréquences cumulées décroissantes

Définition

La fréquence cumulée décroissante d'une modalité, est la somme des fréquences des modalités supérieures ou égales à cette modalité.

Modalité	12	14	15	16	17	Total
Effectif	1	5	19	17	8	50
Fréquence en %	2	10	38	34	16	100
Fréquence cumulée décroissante	100	98	88	50	16	

b. 100.....

Exercice de fixation

Complète par VRAI ou par FAUX, les propositions suivantes :

Dans le tableau des fréquences cumulées décroissantes en pourcentage, la première fréquence cumulée décroissante est égale à :

a.	50						_	

Solution

- a. FAUX
- b. FAUX
- c. FAUX
- d. VRAI

Exercice de maison

Complète le tableau statistique ci-dessous :

Modalités	8	10	15	18	22	Total
Effectifs	7	13	16	4	5	45
Effectifs						
cumulés						
décroissants						
Fréquences						
cumulées						
décroissantes						

Solution

Modalités	8	10	15	18	22
Effectifs	7	13	16	4	5
Effectifs					
cumulés	45	38	25	9	5
décroissants					
Fréquences					
cumulées	100	84	56	20	11
décroissantes					
en %					

II- Moyenne et médiane d'une série statistique à caractère quantitatif :

1- Moyenne d'une série statistique à caractère quantitatif.

Définition:

La moyenne d'une série statistique à caractère quantitatif X, est souvent notée \overline{X} et elle est la somme de toutes les valeurs prises par X divisée par nombre total de valeurs N, appelé effectif total.

Formule de calcul de \overline{X}

Soit le tableau statistique suivant :

Modalités	а	b	С	d	e	f
Effectifs	n_1	n_2	n_3	n_4	n_5	n_6

$$\overline{X} = \frac{a \times n_1 + b \times n_2 + c \times n_3 + d \times n_4 + e \times n_5 + f \times n_6}{n_1 + n_2 + n_3 + n_4 + n_5 + n_6}$$

Exemple:

Modalité	12	14	15	16	17	Total
Effectif	1	5	19	17	8	50

La moyenne de cette série statistique est :
$$\overline{X} = \frac{12 \times 1 + 14 \times 5 + 15 \times 19 + 16 \times 17 + 17 \times 8}{50} = 15,5$$

Exercice de fixation

Le tableau ci-dessous donne la répartition des notes des élèves d'une classe de 2ndA à un devoir d'anglais.

Notes	7	8	9	10	12	13	15	17
Effectifs	3	6	5	9	4	5	3	1

Calcule la moyenne de la classe à ce devoir.

Solution

$$\bar{X} = \frac{7 \times 3 + 8 \times 6 + 9 \times 5 + 10 \times 9 + 12 \times 4 + 13 \times 5 + 15 \times 3 + 17 \times 1}{36} = 10,5$$

Remarque : Si les modalités sont regroupées par intervalles de nombres, alors les valeurs a, b, c, d, e et f sont remplacées par les centres de chacun de ces intervalles dans la formule de calcul de \overline{X} .

Moyennes annuelles en mathématiques	[6;8[[8;10[[10;12[[12;14[[14;16[
Centre c_i	7	9	11	13	15
Effectifs n_i	9	20	18	15	10

$$\overline{X} = \frac{7 \times 9 + 9 \times 20 + 11 \times 18 + 13 \times 15 + 15 \times 10}{72} = 10,92$$

Exercice de fixation

Le tableau ci-dessous donne la répartition des âges des patients reçus en un mois dans un centre de santé.

Âge	[10; 20[[20; 30[[30;40[[40;50[[50;60[
Effectif	16	22	34	48	80

Calcule l'âge moyen des patients de ce centre de santé.

Solution

Calculons l'âge moyen des patients.

Classes d'âge	[10; 20[[20; 30[[30;40[[40;50[[50;60[
Centre	15	25	35	45	55
Effectif	16	22	34	48	80

$$\bar{X} = \frac{15 \times 16 + 25 \times 22 + 35 \times 34 + 45 \times 48 + 55 \times 80}{200} = 42,7$$

2. Médiane d'une série statistique

3.1 Définition :

La médiane d'une série statistique dont les modalités sont rangées dans l'ordre croissant, est une valeur qui partage la population en deux séries de même effectif.

Cas pratique d'un caractère quantitatif discret :

- Si l'effectif total N est **impair**, la médiane est la $\frac{N+1}{2}$ ième valeur du caractère .
- Si l'effectif total N est **pair**, la médiane est un élément de l'intervalle constitué par la $\frac{N}{2}$ ième valeur et $(\frac{N}{2} + 1)$ ième valeur du caractère (on prend souvent le centre).

Âge	12	13	15	16	17	18	19	Total
Effectifs	2	3	1	2	3	3	1	15

- Rangeons les âges par ordre croissant :
 12; 12; 13; 13; 13; 15; 16; 16; 17; 17; 17; 18; 18; 18; 19
- L'effectif total 15 est impair donc la $\frac{15+1}{2} = 8^{\text{ème}}$ valeur du caractère qui est 16 est la médiane de cette série statistique.

Exercice de fixation

Le tableau ci-dessous donne les tailles des petites plantes de 17 élèves à 10 jours après la mise en germination.

Taille en cm	0	8	12	14	16	17	18	19
Effectif	1	2	2	4	1	2	2	3

Détermine la médiane de cette série statistique.

Solution

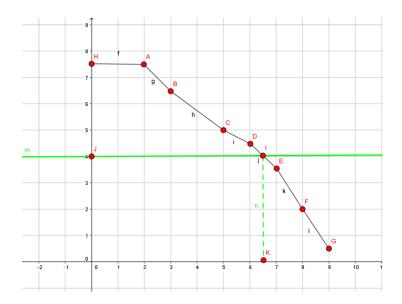
- Rangeons les tailles par ordre croissant :
 0; 8; 8; 12; 12; 14; 14; 14; 14; 16; 17; 17; 18; 18; 19; 19; 19.
- L'effectif total 17 est impair. Donc la $\frac{17+1}{2} = 9^{\text{ème}}$ valeur du caractère qui est 14 est la médiane de cette série statistique.

3.2 Détermination graphique de la médiane d'une série statistique

Cas pratique d'un caractère quantitatif continu :

Après avoir construit le polygone des effectifs cumulés décroissants :

- Chaque classe est en abscisse
- L'effectif cumulé décroissant de chaque classe est en ordonnée.


On peut faire une estimation graphique de la valeur de la médiane comme étant l'abscisse du point de la courbe d'ordonnée $\frac{N}{2}$, N étant l'effectif total de la série statistique étudiée.

NB: On détermine de la même manière la médiane avec le polygone des fréquences cumulées décroissantes comme abscisse du point d'ordonnée 0,5.

Remarques:

- -La médiane n'est pas toujours une valeur du caractère
- -Une médiane peut être un nombre réel unique ou tout nombre d'un intervalle fermé de IR.

Âge	12	13	15	16	17	18	19	Total
Effectifs	2	3	1	2	3	3	1	15
Eff. cumulé	15	13	10	9	7	4	1	
décroissant								

Diagramme des effectifs cumulés décroissant

Échelle : En abscisse : 2......12 ans ; 3......13 ans etc. (1cm→1cm)

En ordonnée : 1cm → 2cm.

Exercice de fixation

Entoure la bonne réponse :

La médiane d'une série statistique d'effectif total N est l'abscisse du point du polygone des effectifs cumulés décroissants dont l'ordonnée est :

0,25; 0,5; 100;
$$\frac{N}{2}$$
; 1; $\frac{N}{4}$; 2N; N.

Solution

La bonne réponse est : $\frac{N}{2}$

3. Série chronologique

4.1 Définition:

On appelle **Série chronologique** (ou série temporelle ou série chronique), une suite d'observations numériques d'une grandeur effectuées à intervalles réguliers au cours du temps (Jours, Mois, Trimestres, Années).

Exemple:

- La production de cacao d'un pays année par année.
- La fiche de température d'un malade jour par jour.
- La pluviométrie d'une région mois par mois

Exercice de fixation

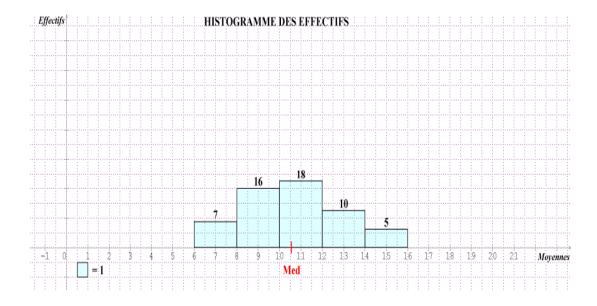
Réponds par VRAI ou par FAUX chacune des affirmations du tableau suivant :

Affirmations	Réponses
Une série chronologique est une suite d'observations numériques	
Une série chronologique est une série dont les modalités sont des	
intervalles	
Une série chronologique est une série qui étudie l'évolution d'un	
phénomène en fonction du temps.	
Une série chronologique est l'ensemble des observations numériques	
faites à des périodes régulières	
Une série chronologique est une série dont le caractère est quantitatif	

Solution

Affirmations	Réponses
Une série chronologique est une suite d'observations numériques	FAUX
Une série chronologique est une série dont les modalités sont des intervalles	FAUX
Une série chronologique est une série qui étudie l'évolution d'un phénomène en fonction du temps.	FAUX
Une série chronologique est l'ensemble des observations numériques faites à des périodes régulières	VRAI
Une série chronologique est une série dont le caractère est quantitatif	FAUX

4.2 Les représentations graphiques d'une série chronologique


Une série chronologique peut être représentée par :

- Un diagramme à bandes (ou histogramme)
- Un polygone des effectifs

C. SITUATION COMPLEXE

Les élèves de ta classe de 2nd A demandent à votre professeur de mathématiques de parrainer votre fête de fin d'année en vous accordant une participation financière.

Le professeur dit vouloir accepter votre doléance à condition que 75% des élèves de ta classe passent en classe supérieure c'est-à-dire qu'ils aient une moyenne générale supérieure ou égale à 10 sur 20. Tu demandes donc à l'informaticien avec l'accord de ton censeur de niveau qui te fournit le diagramme suivant :

A l'aide d'une démarche argumentée apporte une solution à la préoccupation de la classe.

Réponse:

 Pour répondre à la préoccupation de mon voisin, je vais utiliser les outils de statistique.

Pour cela, je vais:

- ✓ Calculer le nombre des élèves qui ont une moyenne supérieure ou égale à 10 sur 20
- ✓ Calculer le pourcentage de réussite de la classe
- ✓ Le pourcentage de réussite me permettra d'apporter la solution

• Résolution

- 1- Le nombre des élèves qui ont une moyenne supérieure ou égale à 10 sur 20 est : 18 + 10 + 5 = 33.
- 2- Le pourcentage de réussite de la classe est : $\frac{33}{56} \times 100 = 58,93\%$
- 3- On obtient malheureusement 58,93% < 75%, donc le professeur ne pourra pas accepter de parrainer la cérémonie de notre classe.

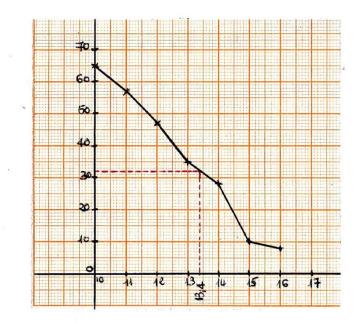
IV-EXERCICES

EXERCICES DE RENFORCEMENT/ APPROFONDISSEMENT

EXERCICE 1

Dans une entreprise de poissonnerie, un comptable a fourni la masse en kg des cartons de poissons vendus à son patron en fin de journée. Voici le tableau obtenu :

Masses en kg	[10;11[[11;12[[12;13[[13;14[[14;15[[15;16[[16;17[
Effectifs	8	12	10	7	18	2	8


Représente le polygone des effectifs cumulés décroissants de cette série puis détermine graphiquement sa médiane

Solution

Dressons le tableau des effectifs cumulés décroissants

Masses en kg	[10;11[[11;12[[12;13[[13;14[[14;15[[15;16[[16;17[
Effectifs	8	12	10	7	18	2	8
Effectifs cumulés décroissants	65	57	47	35	28	10	8

Représentons le polygone des effectifs cumulés décroissants

Echelle : Abscisse(1cm→ 1kg) Ordonnée(1cm→10)

D'après le graphique la médiane de cette série statistique est 13,4.

EXERCICE 2

Le tableau ci-dessous désigne la consommation en kilowattheures (Kwh) d'électricité de 200

familles d'un quartier, pour 2 mois de consommations.

Consommation en kwh	[100;150[[150 ;200[[200 ;250[[250 ;300[[300 ;350[
Nombre de famille	60	30	50	35	25

- 1) Détermine le nombre de familles qui consomme au moins 200 kwh chaque deux mois.
- 2) Calcule la moyenne de la quantité d'électricité consommée en deux mois par une famille.
- 3) Construis le polygone des effectifs cumulés décroissants.

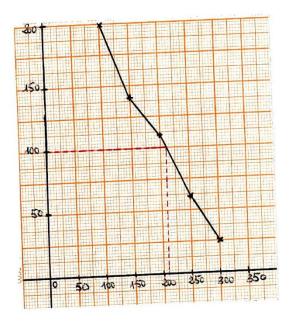
- a- Détermine graphiquement la médiane de cette série statistique.
- b- Donne une interprétation de la médiane calculée précédemment.

Solution

1) Déterminons le nombre de familles qui consomme au moins 200 kwh chaque deux mois.

On a: 50+35+25 = 110 familles qui consomment au moins 200 kwh chaque deux

2) Calculons la moyenne \bar{X} de la quantité d'électricité consommée en deux mois par une famille.


G + 125 175 20	[250;300]	[300;350[
Centre 125 175 22	5 275	325
Nombre de famille 60 30 5	35	25

$$\bar{V} = \frac{125 \times 60 + 175 \times 30 + 225 \times 50 + 275 \times 35 + 325 \times 25}{125 \times 10^{-3}}$$

 $\bar{X} = 152,5$

3) Construisons le polygone des effectifs cumulés décroissants.

Consommation en kwh	[100;150[[150 ;200[[200 ;250[[250 ;300[[300 ;350[
Nombre de famille	60	30	50	35	25
Effectifs cumulés	200	140	110	60	25
décroissants					

Echelle : Abscisse(1cm→ 50 kwh) Ordonnée(2cm→ 50)

4) a- D'après le graphique la médiane de cette série statistique est 210.
 b- Interprétons ce résultat
 La moitié des familles consomme chaque deux mois au plus 210 kwh.