Équations du second degré

On recherche les racines de la fonction du second degré $f(x) = a.x^2 + b.x + c$ ($a \ne 0$), c'est à dire les valeurs de x telles que f(x) = 0, ou telles que $a.x^2 + b.x + c = 0$. Graphiquement, ces points sont les intersections du graphique avec l'axe X, ou encore les points d'ordonnée (hauteur) nulle.

Rappel:

Il est toujours possible de noter
$$f(x)=a.x^2+b.x+c$$
 ($a \ne 0$) sous la forme $f(x)=a.(x+p)^2+q$, avec $p=\frac{b}{2a}$ et $q=\frac{4ac-b^2}{4a}$

Formules:

On recherche x tel que : $a.x^2 + b.x + c = a.(x+p)^2 + q = 0$ $a.(x+p)^2 + q = 0$ $a.(x+\frac{b}{2a})^2 + \frac{4ac-b^2}{4a} = 0$ $a.(x+\frac{b}{2a})^2 = -\frac{4ac-b^2}{4a} = \frac{b^2-4ac}{4a}$ $(x+\frac{b}{2a})^2 = \frac{b^2-4ac}{4a^2}$

Ici, trois cas sont possibles, selon que le membre de droite est positif, nul ou négatif : il y a deux solutions, une seule ou aucune.

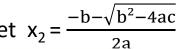
Notons que $\frac{b^2-4ac}{4a^2}$ est du même signe que b^2 - 4ac, vu que $4a^2=(2a)^2$ est toujours positif. Pour la facilité, on convient de noter $\Delta = b^2$ - 4ac.

Premier cas : $\Delta = b^2$ - 4ac > 0

$$(x+\frac{b}{2a})^2 = \frac{b^2-4ac}{4a^2} > 0$$
, il y a donc deux solutions qui sont

$$\chi + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} = \pm \frac{\sqrt{b^2 - 4ac}}{\sqrt{4a^2}} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 ou bien $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ et $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$



Deuxième cas : $\Delta = b^2$ - 4ac = 0

$$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} = 0$$
, il y a donc une seule solution qui est

$$\left(x + \frac{b}{2a}\right)^2 = 0 \Leftrightarrow x + \frac{b}{2a} = 0 \Leftrightarrow x = -\frac{b}{2a} (= -p, abs. du sommet)$$

4-3-2-1-0 1

Troisième cas : $\Delta = b^2$ - 4ac < 0

$$(x+\frac{b}{2a})^2 = \frac{b^2-4ac}{4a^2} < 0$$
: c'est impossible (un carré ne peut être négatif), il n'y a donc aucune solution, on note $S = \emptyset$

Conclusion:

Pour résoudre l'équation $a.x^2 + b.x + c = 0$ (a \neq 0) on calcule d'abord Δ = b²- 4ac. Selon le signe de Δ , il y a trois possibilités :

• Si
$$\Delta > 0$$
, les deux racines sont $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

• Si
$$\Delta$$
 = 0, la seule racine est x = $-\frac{b}{2a}$

• Si Δ < 0, l'équation est impossible et on note S = \emptyset