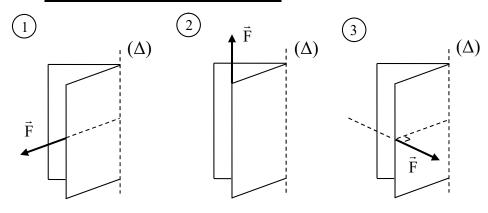
Fomesoutra.com Niveau: 2^{nde} C OG 2 : APPLIQUER LES CONDITIONS D'EQUILIBRE D'UN SOLIDE SOUMIS A DEUX OU TROIS FORCES A LA RESOLUTION D'EXERCICES SMPLES DE STATIQUE. TITRE: EQUILIBRE D'UN SOLIDE MOBILE Durée: 5 H **AUTOUR D'UN AXE FIXE OS 1**: Utiliser les conditions d'équilibre d'un solide mobile autour **Objectif** spécifique : d'un axe fixe. Moyens: Vocabulaire spécifique : **Documentation**: Livres de Physique AREX Seconde, Eurin-gié Seconde. Guide pédagogique et Programme. Amorce :

Plan du cours :


- I) Rotation d'un solide autour d'un axe fixe
 - 1° Effet de rotation d'une force
 - 1.1° Expériences et observations
 - 1.2° Conclusion
 - 2° Moment d'une force par rapport à un axe fixe
 - 2.1° Expériences
 - 2.2° Définition du moment d'une force
 - 2.3° Le moment : grandeur algébrique
- II) Conditions d'équilibre d'un solide mobile autour d'un axe fixe
 - 1° Théorème des moments
 - 1.1° Expérience
 - 1.2° Résultats
 - 1.3° Enoncé du théorème des moments
 - 2° Conditions générales d'équilibre

Activités réponses Fomesoutra.com pos a portée de main

EQUILIBRE D'UN SOLIDE MOBILE AUTOUR D'UN AXE FIXE

I) Rotation d'un solide autour d'un axe fixe

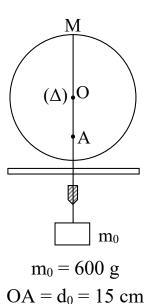
- 1° Effet de rotation d'une force
 - 1.1° Expériences et observations

Il n'y a pas de rotation

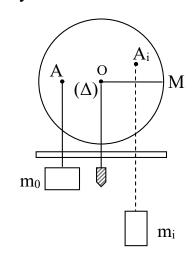
Il y a rotation

1.2° Conclusion

Une force a un effet de rotation sur un solide mobile autour d'un axe fixe si sa droite d'action :


- n'est pas parallèle à l'axe de rotation;
- ne coupe pas l'axe de rotation.

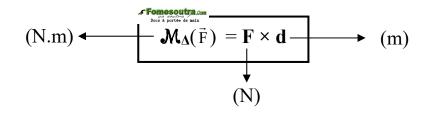
2° Moment d'une force par rapport à un axe fixe


- 2.1° Expériences
 - Dispositif expérimental

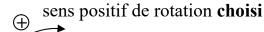
Observations

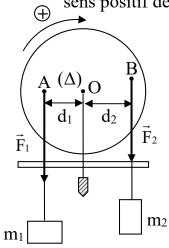
Exerçons différentes forces à différentes distances d de l'axe (Δ), par l'intermédiaire de masses marquées, de sortes à ramener le rayon OM à l'horizontale.

• Tableau de mesure


F (N)	$F_0 = 6$	$F_1 = 4,5$	$F_2 = 6$	$F_3 = 9$
d (m)	$d_0 = 0.15$	$d_1 = 0.20$	$d_2 = 0.15$	$d_3 = 0.10$
$\mathbf{F} \times \mathbf{d}$	0,90	0,90	0,90	0,90

• Exploitation des résultats


On obtient le même effet de rotation chaque fois que : $\mathbf{F_0} \times \mathbf{d_0} = \mathbf{F_i} \times \mathbf{d_i}$. L'effet de rotation dépend donc à la fois de l'intensité \mathbf{F} de la force exercée et de la distance \mathbf{d} à l'axe de rotation. Cette distance d est appelée **bras de levier**.


2.2° Définition du moment d'une force

Le moment $\mathcal{M}_{\Delta}(\vec{F})$ par rapport à un axe fixe (Δ) d'une force \vec{F} orthogonale à cet axe est égal au produit de l'intensité F de la force par la longueur d du bras de levier :

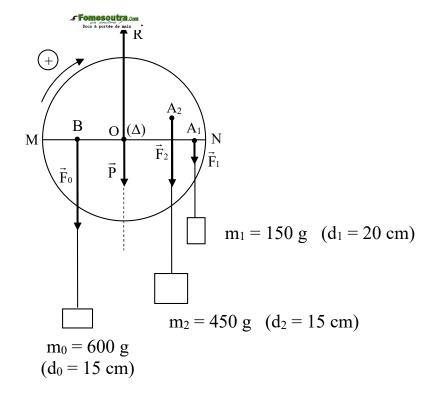
2.3° Le moment : grandeur algébrique

 $\vec{F_2}$ tend à faire tourner le disque dans le sens positif **choisi** et $\vec{F_1}$ dans le sens contraire. On pose que :

$$\mathcal{M}_{\Delta}(\overline{F_2}) > 0$$
 et égal à $\mathcal{M}_{\Delta}(\overline{F_2}) = F_2.d_2$;

$$\mathcal{M}_{\Delta}(\vec{F}_{1}) < 0$$
 et égal à $\mathcal{M}_{\Delta}(\vec{F}_{1}) = -F_{1}.d_{1}$.

Conséquences


- Deux forces ayant le même moment par rapport à un axe auront le même effet de rotation.
- Si une force n'a aucun effet de rotation sur un solide alors son moment par rapport à l'axe de rotation du solide est nul.

II) Conditions d'équilibre d'un solide mobile autour d'un axe fixe

1° Théorème des moments

1.1° Expérience

Maintenons en équilibre un disque capable de tourner autour d'un axe fixe (Δ) en exerçant des forces à différents endroits.

1.2° Résultats

F (N)	$F_0 = 6 \text{ N}$	$F_1 = 1,5 \text{ N}$	$F_2 = 4.5 \text{ N}$	P = 2 N	R = 14 N
d (m)	$d_0 = 0.15$	$d_1 = 0,20$	$d_2 = 0.15$	d' = 0	d'' = 0
\mathcal{M}_{Δ} (N.m)	- 0,90	+ 0,30	+ 0,60	0	0

Calculons la somme des différentes forces extérieures appliquées au disque maintenu en équilibre :

$$\sum \mathcal{M}_{\Delta}(\vec{F}_{ext}) = \mathcal{M}_{\Delta}(\vec{F}_{0}) + \mathcal{M}_{\Delta}(\vec{F}_{1}) + \mathcal{M}_{\Delta}(\vec{F}_{2}) + \mathcal{M}_{\Delta}(\vec{P}) + \mathcal{M}_{\Delta}(\vec{R})$$

$$= -0.9 + 0.3 + 0.6 + 0 + 0$$

$$\sum \mathcal{M}_{\Delta}(\vec{F}_{ext}) = 0 \text{ N.m.}$$

On constate que cette somme est nulle.

1.3° Enoncé du théorème des moments

Lorsqu'un solide mobile autour d'un axe fixe, est en équilibre, la somme algébrique des moments par rapport à cet axe, de toutes les forces extérieures appliquées à ce solide est nécessairement nulle :

$$\sum_{\bullet} \mathcal{M}_{\Delta}(\vec{F}_{ext}) = 0.$$

2° Conditions générales d'équilibre

Lorsqu'un solide mobile autour d'un axe fixe (Δ) est en équilibre alors :

 la somme algébrique des moments par rapport à l'axe des forces appliquées est nulle :

$$\sum \mathcal{M}_{\Delta}(\vec{F}_{ext}) = 0.$$

C'est la condition nécessaire de **non rotation** autour de l'axe (Δ) .

- la somme vectorielle des forces appliquées est nulle :

$$\sum (\vec{F}_{ext}) = \vec{0}.$$

C'est la condition nécessaire d'immobilité du centre d'inertie du solide.