

DEVOIR ELECTRONIQUE ANALOGIQUE: FILTRAGE

1- On considère le filtre passif dont le schéma est représenté ci-dessous (figure 1). C_1

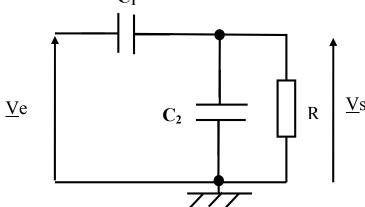


Figure 1

1-1 Exprimer la fonction de transfert $\underline{T} = \frac{\underline{V}s}{\underline{V}e}$ en fonction de R, C₁, C₂ et ω $\underline{V}e$

1-2 La fonction de transfert
$$\underline{T} = \frac{\underline{V}s}{\underline{V}e}$$
 se met sous la forme $\underline{T} = T_0 \cdot \frac{j\frac{\omega}{\omega 0}}{1+j\frac{\omega}{\omega 1}}$

Exprimer ω_0 et ω_1 en fonction des éléments du montage puis donner la valeur de T_0 .

- 1-3Déterminer la nature du filtre réalisé par le montage de la figure1.
- 1-4 Déterminer T_{max} , la valeur maximale du module de \underline{T} en fonction de C_1 et C_2 .
- 2-On considère le schéma de la figure 2.

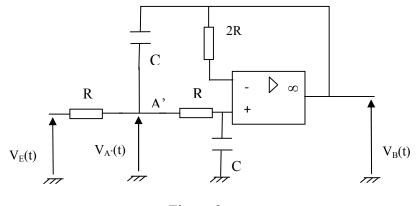


Figure 2

 $V_E(t)$, $V_{A'}(t)$ et $V_B(t)$ sont des grandeurs sinusoïdales de fréquence f, les grandeurs complexes associées sont respectivement \underline{V}_E , \underline{V}_A ' et \underline{V}_B L'amplificateur opérationnel utilisé est considéré parfait et fonctionne en régime linéaire.

- 2-1 Donner les trois principales caractéristiques d'un amplificateur opérationnel parfait.
- 2-2 Donner les équations de fonctionnement d'un amplificateur opérationnel parfait en régime linéaire.
- 2-3 Exprimer $\underline{V}_{A'}$ en fonction de \underline{V}_{E} , \underline{V}_{B} , R, C et ω. (ω étant la pulsation : ω=2 π f)
- 2-4 Exprimer la fonction de transfert $\underline{T} = \frac{\underline{V}_B}{\underline{V}_A}$ en fonction de R, C et ω .

2-5
$$\underline{\mathbf{T}}$$
 se met sous la forme : $\underline{\mathbf{T}} = \frac{To}{1+2z(j\frac{\omega}{\omega 0})+(j\frac{\omega}{\omega 0})^2}$

Exprimer To, z et ωo.

- 2-6 Déterminer la nature du filtre réalisé par le montage.
- 2-7 Déterminer la bande passante du filtre sachant que $R=1M\Omega$ et C=33nF.
- 2-8 On applique à l'entrée du montage une tension $V_E(t)$ en créneaux évoluant entre 0 et V_{CC} de fréquence f=1kHz. On donne V_{CC} = 10V.

La décomposition en série de Fourier de $V_E(t)$ est représentée par la relation suivante : $V_E(t) = \frac{Vcc}{2} + \frac{2Vcc}{2\pi} \left(sin\omega t + \frac{1}{3} sin3\omega t + \frac{1}{5} sin5\omega t \dots \right)$ avec $\omega = 2\pi f$ Donner la valeur de $V_B(t)$.