DEVOIR SURVEILLE N°1 (2èT) LM20 : M.ZONDOH

Date: 19/12/2022

Année scolaire 2022-2023 Durée : 4h . Coefficient : 4

MATHEMATIQUES

- SERIE: D

Cette épreuve comporte trois (03) pages numérotées 1, 2 et 3.

Tout modèle de calculatrice scientifique est autorisé.

Exercice 1 (2ponts)

Ecris, sur ta feuille de copie, le numéro de chaque affirmation suivie de VRAI si l'affirmation est vraie ou de FAUX si l'affirmation est fausse.

- 1- Si une fonction f est dérivable en un point $\,a\,$, alors elle est continue en ce point.
- 2- Soit f une fonction dérivable sur un intervalle K, a et b deux éléments de K tels que : a < b. S'il existe un nombre réel M tel que, $\forall x \in [a;b]$, $|f'(x)| \leq M$, alors $-M(b-a) \leq f(b) f(a) \leq M(b-a)$.
- 3- Une primitive sur R de la fonction définie par : $f(x) = 3x^2 4x + 1$ est la fonction définie par : $F(x) = x^3 2x^2 + x \pi$
- 4- Soit X une variable aléatoire suivant une loi binomiale de paramètre n et P alors la variance de X est le nombre réel positif noté V(X) tel que V(X) = np

ECOUSHE = 1-11

Exercice 2 (2points).

Pour chaque Affirmation, quatre réponses sont proposées dont un seul est juste. Choisis la réponse juste.

N*	Enoncé à trou	Réponses	
1	Une fonction numérique f définie sur intervalle ouvert K est dérivable en un nombre réel x_0 de K si et seulement si $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ est égale à	Α	+∞
		В	l ; $l \in \mathbb{R}$
		C	-∞
2	√32 est égale à	Α	16
		В	32
		C	٠ 2
3	Soit f une fonction définie sur]0; $+\infty$ [telle que $\forall x \in$]0; $+\infty$ [, $(x) \le -3x$, alors $\lim_{x \to +\infty} f(x)$ est égale.	А	0
		В	-∞
		C	· +∞
4	Soit une variable aléatoire égale au nombre d'élèves filles dans une classe. Alors la probabilité d'avoir au plus une fille est :	Α	1 - P(X = 0)
		В	P(X=0) + P(X=1)
		C	• P(X > 1)

Exercice 3 (3 Points)

On considère les fonctions f et F définie sur $\left]-\infty; \frac{3}{2}\right[$ respectivement par : $f(x) = x\sqrt{3-2x}$ et $F(x) = (ax^2+bx+c)\sqrt{3-2x}$, a, b et c sont des nombres réels.

- 1- Détermine a, b et c pour que F soit une primitive de f sur $\left]-\infty; \frac{3}{2}\right[$.
- 2- Déduis —en la primitive de f sur $]-\infty; \frac{3}{2}[$ qui s'annule en -3.

DEVOIR SURVEILLE N*1 (2èT) LM2O : M.ZONDOH

Date: 19/12/2022

Année scolaire 2022-2023 Durée : 4h . Coefficient : 4

Exercice 4 (3 points)

Un joueur lance successivement trois fois de suite une pièce de monnaie parfaitement équilibrée. Il gagne 600 francs s'il obtient 3 fois $\ll FACE \gg$. Il gagne 300 francs s'il obtient exactement 2 fois $\ll FACE \gg$ et gagne 100 francs s'il obtient exactement une fois $\ll FACE \gg$, mais il perd 1000 francs s'il n'obtient que des $\ll PILE \gg$. On désigne par X la variable aléatoire représentant en francs le gain du joueur (un gain est positif ou négatif).

- 1-Détermine la loi de probabilité de la variable X.
- 2-Calcule la probabilité de gagner strictement moins de 300 francs.
- 3) a. Calcule l'espérance mathématique de la variable X.
 - b. Que représente ce résultat pour le joueur.
 - c. Interprète ce résultat pour le joueur.
- 4) Calcule le montant que le joueur devrait payer lorsqu'il n'obtient que des \ll PILE \gg pour que le jeu soit équitable.

Exercice 5 (6 points).

f est la fonction définie sur
$$]-\infty;-1] \cup [1;+\infty[par:f(x)=-\frac{x}{2}+\frac{\sqrt{x^2-1}}{x}]$$

Partie A

g est la fonction définie sur]1; $+\infty$ [par : $g(x) = 2 - x^2\sqrt{x^2 - 1}$

- 1. Calcule la limite de g en $+\infty$.
- 2. Etudie les variations de g et dresse son tableau de variation.
- 3. a. Démontre que l'équation $x\epsilon]1$; $+\infty[$, g(x)=0 admet une solution unique α et que $1<\alpha<2$.
 - b. Donne une valeur approchée de α à 10^{-1} près.

4. Justifie que :
$$\begin{cases} \forall x \epsilon] 1; \alpha [\ ,\ g(x) > 0 \\ \forall x \epsilon] \alpha ;\ + \infty [\ ,g(x) < 0 \end{cases}$$

Partie B

- 1. Etudie la parité de f.
- 2. a . Calcule la limite de f en $+\infty$.
 - b. Démontre que la droite (D) d'équation $y=-\frac{x}{2}+1$ est asymptote à (C) en $+\infty$.
 - c. Etudie la position de (C) par rapport à (D) sur]1; $+\infty$ [.
- 3. Etudie la dérivabilité de f en 1 puis interprète graphiquement le résultat.
- 4. a. Démontre que : $\forall x \in]1; +\infty[$, $f(x) = \frac{g(x)}{2x^2\sqrt{x^2-1}}$.
 - b. Dresse le tableau de variation de \boldsymbol{f} .

DEVOIR SURVEILLE N*1 (2èT) LM20 : M.ZONDOH

Date: 19/12/2022

Année scolaire 2022-2023 Durée : 4h . Coefficient : 4

5. Démontre que : $f(\alpha) = -\frac{\alpha}{2} + \frac{2}{\alpha^3}$.

Exercice 6 (5 points)

Le car loué par le lycée Moderne 2 d'Odienné pour sa colonie de vacances doit effectuer un trajet de 1500 km. Lorsque ce car roule à la vitesse moyenne v, exprimée en m/h, la dérivée de sa consommation C(v), exprimée en litres pour $100 \ km$, selon les études d'un expert sur ce type de véhicule, est donnée par la relation $C(v) = \frac{-300}{v^2} + \frac{1}{3}$. Une information complémentaire fournie par le chauffeur au moment de la location du car est qu'il consomme 25 litres au $100 \ km$ pour une vitesse moyenne de $60 \ m/h$. Le salaire horaire du chauffeur est de $900 \ F$ CFA et le litre du gasoil coûte $600 \ F$ CFA. Les organisateurs de la colonie veulent déterminer la vitesse moyenne à laquelle le chauffeur doit rouler pour minimiser le coût total du voyage. Ils te sollicitent pour leur venir en aide.

Propose-leur une solution argumentée basée sur tes connaissances mathématiques.