MINISTERE DES ENSEIGNEMENTS SECONDAIRES

REPUBLIQUE DU CAMEROUN Paix-Travail-Patrie

GROUPE AGIR COMPETENT

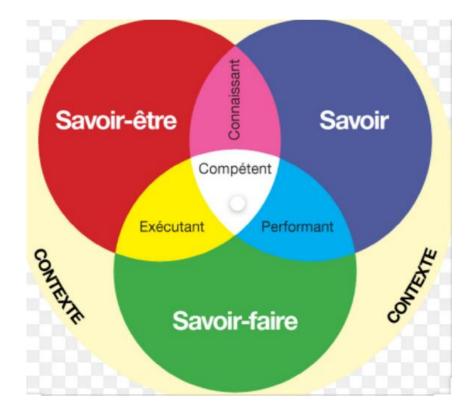
Année Scolaire

2019-2020

SUJETS DE MATHS AU BACC D & TI 2020

DOCUMENT DE TRAVAIL

Pour une préparation intense à l'examen !!!



Bonne Réussite au Baccalauréat 2020

Examen: BACCALAUREAT

Session: 2020 Séries: D & TI

Durée: 4h Coefficient: 4 Prof: T. N. AWONO MESSI

ÉPREUVE DE MATHEMATIQUES N° 1

EXERCICE 1: 5 points

- **1.** P est un polynôme à variable complexe z défini par : $P(z) = z^3 + 3iz 5 + 5i$.
 - (a) Vérifier que le nombre complexe -1-i est une racine de P.

0,25pt

(b) Déterminer les complexes a et b tels que : $P(z) = (z+1+i)(z^2+az+b)$.

0,5pt

(c) Résoudre dans \mathbb{C} l'équation P(z) = 0.

0,75pt

- **2.** Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On donne trois points A, B et C d'affixes respectives $z_A = -1 i$, $z_B = 2 i$ et $z_C = -1 + 2i$.
 - (a) Déterminer l'ensemble ${\mathscr D}$ des points M d'affixes z tels que :

|z-2+i|=|z+1-2i|, puis vérifier que le point A appartient à \mathscr{D} .

0,75pt

- **(b)** Déterminer un argument du nombre complexe $\frac{z_B-z_A}{z_C-z_A}$, puis en déduire la mesure principale de l'angle orienté $(\overrightarrow{AC},\overrightarrow{AB})$.
- (c) En déduire la nature exacte du triangle ABC.

0,25pt

- **3.** On considère la similitude directe S de centre *B* qui transforme *A* en *C*.
 - (a) Déterminer le rapport et l'angle de la similitude S.

0,5pt

(b) Donner l'écriture complexe de S.

0,5pt

(c) $\mathscr C$ est le cercle circonscrit au triangle ABC. Déterminer les caractéristiques de $\mathscr C$ image de $\mathscr C$ par S. 0,75pt

EXERCICE 2: 5 points

- A) Une urne contient dix boules indiscernables au toucher : cinq vertes, trois rouges et deux jaunes. On tire au hasard et simultanément trois boules de l'urne. On considère les événements A: « les boules tirées sont vertes » ; B: « les boules tirées sont de la même couleur » ; C: « les boules tirées sont chacune de couleur différente ».
 - **1.** Calculer les probabilités p(A), p(B) et p(C).

1,5pt

- 2. Soit X la variable aléatoire égale au nombre de couleurs obtenues après le tirage.
 - (a) Déterminer la loi de probabilité de X.

1pt

(b) Calculer l'espérance mathématique de X.

0,5pt

B) Une entreprise achète, utilise et vend des machines après un certain nombre x_i d'années. Après six années, l'évolution du prix de vente y_i d'une machine en fonction du nombre d'années d'utilisation se présente comme suit :

Nombre d'années X_i	1	2	3	4	5	6
Prix y_i en milliers de FCFA	150	125	90	75	50	45

1. Déterminer une équation cartésienne de la droite de régression de y en x. 1,5pt 2. En déduire une estimation du prix de vente d'une machine après 7 ans d'utilisation. 0,5pt PROBLEME: 10 points **PARTIE A:** 4,5 points On considère la suite $(U_n)_{n\in\mathbb{N}^*}$ à termes positifs définie par : $U_1=1$ et $\forall n\geq 1, (U_{n+1})^2=2U_n$. **1.** Calculer U_2, U_3 et U_4 . On donnera les résultats sous la forme 2^r où $r \in \mathbb{Q}$. **2.** On pose pour tout $n \ge 1$, $V_n = \ln U_n - \ln 2$ où \ln désigne le logarithme népérien. (a) Montrer que $(V_n)_{n\in\mathbb{N}^*}$ est une suite géométrique dont on déterminera le premier terme et la raison. 0,75pt **(b)** Donner l'expression de $V_{\scriptscriptstyle n}$, puis celle de $U_{\scriptscriptstyle n}$ en fonction de n.1pt **3.** On désigne par S_n la somme des n premiers termes de la suite $(V_n)_{n\in\mathbb{N}^*}$ et par T_n le produit des premiers termes de la suite $(U_n)_{n\in\mathbb{N}^*}$. (a) Calculer S_n et T_n en fonction de n. 1pt **(b)** Etudier la convergence éventuelle des suites $(S_n)_{n\in\mathbb{N}^*}$ et $(T_n)_{n\in\mathbb{N}^*}$. 1pt **PARTIE B:** 5,5 points On considère la fonction f définie sur \mathbb{R} par $f(x) = x + 1 + \frac{x}{e^x}$. On note \mathscr{C} sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) . A) Soit g la fonction définie sur \mathbb{R} par $g(x) = 1 - x + e^x$. **1.** Etudier les variations de g. 0,75pt **2.** En déduire le signe de g(x). 0,5pt **3.** Déterminer la limite de f en $-\infty$ puis en $+\infty$. 0,5pt **4.** On appelle f la dérivée de la fonction f sur \mathbb{R} . (a) Démontrer que pour tout réel $x, f'(x) = e^{-x}g(x)$. 0,5pt **(b)** Dresser le tableau de variation de f. 0,5pt (c) Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur \mathbb{R} . Vérifier que $-1 < \alpha < 0$. 0,5pt **5.** (a) Démontrer que la droite (T) d'équation y = 2x + 1 est tangente à la courbe $\mathscr C$ au point d'abscisse 0. 0,5pt

(a) Etudier la position relative de la courbe \mathscr{C} et de la droite (T). 0,5pt

B) 1. Soit H la fonction définie et dérivable sur \mathbb{R} par $H(x) = (-x-1)e^{-x}$. Démontrer que H est une primitive sur $\mathbb R$ de la fonction h définie par $h(x) = xe^{-x}$. 0,5pt

2. On note \mathscr{D} le domaine délimité par la courbe \mathscr{C} , la droite (T) et les droites d'équations x = 1 et x = 3.

Calculer, en unité d'aire, l'aire du domaine @.

Examen: BACCALAUREAT

Session: 2020 Séries: D & TI

Durée : 4h Coefficient : 4 Prof : T. N . AWONO MESSI

ÉPREUVE DE MATHEMATIQUES N° 2

EXERCICE 1: 4,25 points

1. Résoudre dans \mathbb{C} l'équation $(E): z^2 - (1+2i)z + 1 + 7i = 0$. **0,75pt**

2. On considère les points A,B et C d'affixes respectives $z_A=3, z_B=-2+i$ et $z_C=7-6i$.

(a) Placer les points A, B et C dans le plan complexe (O, \vec{u}, \vec{v}) . 0,5pt

(b) Calculer $\frac{z_C - z_A}{z_B - z_A}$; en déduire une mesure de l'angle orienté $(\overrightarrow{AB}, \overrightarrow{AC})$. **0,75pt**

3. S est une application du plan dans lui-même qui à tout point M d'affixe z associe le point M d'affixe z 'telle que z = (-1+i)z + 6 - 3i.

(a) Déterminer la nature et les éléments caractéristiques de S.

0,75pt

(b) Déterminer l'image du point B par S.

0,25pt

(c) $\mathscr E$ est le cercle de centre B et de rayon $\sqrt{2}$. Déterminer et construire l'image Γ de ce cercle par l'application S et donner son équation cartésienne.

EXERCICE 2: 4,75 points

A) Le tableau suivant donne la production agricole y_i en tonnes, en fonction de la taille x_i , en hectares de l'exploitation, pour un ensemble de six exploitations d'une localité d'un pays.

x_i (en ha)	1	2	3	4	5	6
y_i (en t)	12	30	42	60	48	54

Construire le nuage de points associés à cette série statistique double.
 (On prendra 1cm pour un hectare en abscisse et 1cm pour 10 tonnes en ordonnées)

2. Déterminer le point moyen G et le placer.

0,25pt

3. Calculer la variance de x et la covariance de x et y.

1pt

4. Donner une équation cartésienne de la droite de régression de y en x et la tracer.

0,5pt

5. Donner une estimation de la production d'un domaine de 8 hectares.

0,5pt

B) Dans cette localité, il y a 2% de la population contaminée par un virus.

On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes :

• La probabilité qu'une personne contaminée ait un test positif est de 0.99 (sensibilité du test).

• La probabilité qu'une personne non contaminée ait un test négatif est de 0,97 (spécificité du test). On fait passer un test à une personne choisie au hasard dans cette population.

On note V l'évènement «la personne est contaminée par le virus» et T l'évènement «le test est positif». \overline{V} et \overline{T} désignent respectivement les évènements contraires de V et T.

1. Préciser les valeurs des probabilités suivantes : $P(V), P_V(T), P_{\overline{V}}(T)$.

0,75pt

2. En déduire la probabilité de l'évènement $V \cap T$.

3. Démontrer que la probabilité que le test soit positif est 0.0492. 0,5pt

PROBLEME: 11 points

Le problème comporte trois parties A,B et C.

PARTIE A: Résolution de l'équation différentielle (E) : $y'-2y = xe^x$.

1. Résoudre sur \mathbb{R} l'équation différentielle (E_0) : y – 2y = 0. 0,5pt

2. Soient a et b deux réels et soit u la fonction définie sur \mathbb{R} par $u(x) = (ax + b)e^x$.

(a) Déterminer a et b pour que u soit solution de (E). 0,5pt

(b) Montrer que v est solution de (E_0) si et seulement si u+v est solution de (E). 0,5pt

(c) En déduire l'ensemble des solutions de l'équation (E). 0,25pt

3. Déterminer la solution de (E) dont la courbe passe par l'origine du repère. 0.5pt

PARTIE B: Etude d'une fonction auxiliaire.

Soit g la fonction définie sur \mathbb{R} par $g(x) = 2e^x - x - 2$. On pose $h(x) = 2(e^x - 1)$ et on définit la suite (U_n) par $U_0 = -2$ et $U_{n+1} = h(U_n)$ pour tout $n \in \mathbb{N}$.

1. Etudier les variations de g et dresser son tableau de variations. 0,75pt

2. (a) Justifier que l'équation g(x) = 0 admet exactement deux solutions réelles dont l'une est 0 et l'autre est notée α . 0,5pt

(a) Montrer que g(x) = 0 équivaut à x = h(x). 0,25pt

(b) Montrer que $-1.60 < \alpha < -1.59$.

(c) Montrer que $h([-2;-1]) \subset [-2;-1]$. En déduire que $\forall n \in \mathbb{N}, U_n \in [-2;-1]$. 0,5pt

(d) Montrer que pour tout $x \in [-2; -1], |h'(x)| \le 0.8$. 0,25pt

(e) Montrer que pour tout $n \in \mathbb{N}$, $|U_{n+1} - \alpha| \le 0, 8 |U_n - \alpha|$ et que $|U_n - \alpha| \le (0, 8)^n$.0,5pt

(f) En déduire que la suite $\left(U_{\scriptscriptstyle n}\right)$ est convergente et déterminer sa limite. 0,5pt

(g) Déterminer un entier $n_{\scriptscriptstyle 0}$ tel que $U_{\scriptscriptstyle n_{\scriptscriptstyle 0}}$ soit une valeur approchée de lpha à $10^{^{-3}}$ près. 0,5pt

3. Déterminer le signe de g(x) suivant les valeurs du réel x. 0,25pt

PARTIE C: Etude de la fonction principale et Calcul d'aire

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x} - (x+1)e^x$. On désigne par \mathscr{C} sa courbe représentative dans le plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ d'unité graphique 2cm.

1. Déterminer la limite de f en $-\infty$ et la limite de f en $+\infty$. 0,5pt

2. Calculer f'(x) et montrer que f'(x) et g(x) ont même signe. 3. Dresser le tableau de variations de f. (on montrera que $f(\alpha) = -\frac{\alpha^2 + 2\alpha}{4}$). 0,5pt

1pt

4. Etudier les branches infinies de la courbe de f et tracer \mathscr{C} . 1pt

5. Soit m un réel strictement inférieur à α . Interpréter graphiquement le réel $\int_{-\infty}^{\infty} f(x) dx$. 0,25pt

6. Calculer $\int_{-\infty}^{\infty} dx$ à l'aide d'une intégration par parties et en déduire $\int_{-\infty}^{\infty} f(x) dx$. 1pt

0,5pt

0,5pt

Examen: BACCALAUREAT

Session: 2020 Séries : D & TI

Durée: 4h Coefficient: 4 **Prof: T. N. AWONO MESSI**

ÉPREUVE DE MATHEMATIQUES N° 3

EXERCICE 1: 4,5 points

Le plan est rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) .

1. Résoudre dans \mathbb{C} l'équation d'inconnue $z:z^2+8\sqrt{3}z+64=0$. 0,5pt

2. On considère les points A et B qui ont pour affixes respectives les nombres complexes $a = -4\sqrt{3} - 4i$ et $b = -4\sqrt{3} + 4i$.

Calculer les distances OA, OB et AB puis en déduire la nature du triangle OAB. 0,75pt

3. On désigne par C le point d'affixe $c = \sqrt{3} + i$ et par D son image par la rotation de centre O et d'angle $\frac{\pi}{2}$. Déterminer l'affixe d du point D. 0,5pt

4. On appelle G le barycentre des points pondérés (O;-1),(D;1) et (B;1).

(a) Montrer que le point G a pour affixe $g = -4\sqrt{3} + 6i$. 0,25pt

(b) Placer les points A, B, C, D et G sur une figure. (Unité graphique : 1cm) 0,5pt

(c) Démontrer que le quadrilatère *OBGD* est un parallélogramme. 0,5pt

5. (a) Justifier l'égalité : $\frac{c-g}{a-g} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$. (b) En déduire une mesure en radians de l'angle $(\overrightarrow{GA}, \overrightarrow{GC})$, ainsi que la valeur du rapport 0,5pt

 $\frac{GC}{CA}$. Que peut-on en déduire concernant la nature du triangle AGC? 1pt

EXERCICE 2:

On considère la suite (U_n) définie par : $U_n = \int_0^2 \frac{2t+3}{t+2} e^{\frac{t}{n}} dt$.

1. (a) Etudier les variations de la fonction f définie sur [0;2] par $f(t) = \frac{2t+3}{t+2}$. 1pt

(b) En déduire que pour tout $t \in [0;2]$, on a : $\frac{3}{2} \le f(t) \le \frac{7}{4}$. 0,5pt

(c) Montrer que : $\frac{3}{2}n\left(e^{\frac{2}{n}}-1\right) \le U_n \le \frac{7}{4}n\left(e^{\frac{2}{n}}-1\right)$ 0,5pt

(d) Montrer que si (U_n) possède une limite l, alors $3 \le l \le \frac{7}{2}$. 0,5pt

2. (a) Vérifier que pour tout $t \in [0; 2], \frac{2t+3}{t+2} = 2 - \frac{1}{t+2}$. 0,5pt

(b) En déduire le nombre $I = \int_{a}^{2} \frac{2t+3}{t+2} dt$. 0.5pt

(c) Montrer que pour tout $t \in [0;2], 1 \le e^{\frac{t}{n}} \le e^{\frac{2}{n}}$ et en déduire que $I \le U_n \le e^{\frac{2}{n}}I$. 1pt PROBLEME: 11 points

Le problème comporte deux parties indépendantes A et B.

PARTIE A: 8 points

- 1. On considère la fonction g définie sur $]0; +\infty[$ par $g(x) = \frac{x-1+x\ln x}{x}$.
 - (a) Etudier les variations de g puis dresser son tableau de variations.

. . .

1pt

(b) Calculer g(1). En déduire le signe de g(x).

0,5pt

- **2.** On considère la fonction f définie par : $\begin{cases} f(x) = e^{x-1} 1 & \text{si } x < 1 \\ f(x) = (x-1)\ln x & \text{si } x \ge 1 \end{cases}$
 - (a) Quel est le domaine de définition de f?
 - **(b)** Etudier la continuité de f en 1.

0,5pt

(c) Etudier la dérivabilité de f en 1.

1pt

(d) Etudier les variations de f et dresser son tableau de variations.

1pt

(e) Construire la courbe \mathscr{C} de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$. (unité : 2cm)

1pt

(f) Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle J à préciser.

0,5pt

(g) Construire la courbe (Γ) de f^{-1} dans le repère précédent.

0,5pt

- 3. (a) Déterminer sur l'intervalle $[1; +\infty[$ les primitives de la fonction $h: x \mapsto (x-1)\ln x$. 0,5pt
 - **(b)** Déterminer en fonction de λ l'aire \mathscr{A} de la partie délimitée par la courbe \mathscr{C} , les droites d'équations $x = \lambda, x = 1$ et y = 1 avec $\lambda < 1$.
 - (c) Calculer $\lim_{n \to \infty} \mathscr{A}$.

0,25pt

0,75pt

PARTIE B: 3 points

Un élève de **Terminale TI** doit se rendre dans son Lycée chaque matin à 7h30. Pour cela, il utilise, selon les jours, deux moyens de transport : la moto ou le taxi. L'élève part tous les jours à 7h00 de son domicile et doit arriver à 7h20 à son lycée. Il prend la moto 7 jours sur 10 et le taxi le reste du temps. Le jour où il prend la moto, il arrive à l'heure dans 99,4% des cas et lorsqu'il prend le taxi, il arrive en retard dans 5% des cas.

On choisit une date au hasard en période scolaire et on note M l'événement : « l'élève se rend au Lycée à moto », T l'événement : « l'élève se rend au Lycée en taxi » et R l'événement : « l'élève arrive en retard au Lycée ».

1. Traduire la situation par un arbre de probabilités.

1pt

2. Déterminer la probabilité de l'événement $M \cap R$.

0,5pt

3. Démontrer que la probabilité de l'événement R est 0.0192.

0,75pt

4. Un jour donné, l'élève est arrivé en retard au Lycée. Quelle est la probabilité qu'il s'y soit rendu en taxi ?

Examen: BACCALAUREAT

Session: 2020 Séries: D & TI

Durée : 4h Coefficient : 4 Prof : T. N . AWONO MESSI

ÉPREUVE DE MATHEMATIQUES N° 4

EXERCICE 1: 5 points

A) Un hôtel d'une ville africaine établit un lien entre le taux d'occupation des chambres exprimé en pourcentage (%) et le montant des frais de publicité (exprimé en centaines de milliers de francs). Les résultats de cette analyse sont consignés dans le tableau ci-dessous :

Frais de publicité	30	27	32	25	35	22	24	35
Taux d'occupation	52	45	67	55	76	48	32	72

- Calculer le coefficient de corrélation linéaire de cette distribution et donne une interprétation de ce résultat.

 1,25pt
- **2.** Déterminer une équation cartésienne de la droite de régression de y en x. **0,75pt**
- 3. Quelle estimation peut-on faire du taux d'occupation de cet hôtel si les frais de publicité étaient de 4.000.000 FCFA ?
- **B)** z est nombre complexe quelconque et $\mathscr P$ le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$.
 - 1. Développer et réduire l'expression $(z+2)(z^2-6z+34)$. 0,5pt
 - **2.** Résoudre dans \mathbb{C} l'équation $z^3 4z^2 + 22z + 68 = 0$. **0,75pt**
 - 3. A, B et C sont trois points de \mathscr{P} d'affixes respectives $z_A = -2, z_B = 3 + 5i$ et $z_C = 3 5i$. La droite (BC) coupe l'axe des abscisses en K et r désigne la rotation de centre K.
 - (a) Quelle est la nature du triangle ABC? Justifier votre réponse. 0,5pt
 - (b) Préciser la mesure principale de l'angle de la rotation r telle que r(B) = A. 0,75pt

EXERCICE 2: 4 points

Un Lycée bilingue de 930 élèves comporte une section anglophone et une section francophone. 30% des élèves sont en section francophone ; 40% des élèves du Lycée sont des garçons ; 25% des élèves garçons du Lycée sont en section anglophone.

1. Recopier et compléter le tableau suivant :

Catégorie d'élèves	Effectif
Elèves en section Anglophone	
Elèves en section Francophone	
Elèves garçons en section Anglophone	
Elèves filles du Lycée	

1pt

2. On choisit au hasard un élève du Lycée. On suppose que tous les choix d'un élève sont équiprobables. Calculer la probabilité de chacun des événements suivants :

(a) A: « choisir un élève de la section anglophone »

- 1pt
- (b) B : « choisir un garçon sachant qu'il est un élève de la section anglophone »
- 1pt
- (c) C: « choisir un élève de la section anglophone sachant qu'il est un garçon »

1pt

PROBLEME: 11 points

A) Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Soient z = x + iy et z' = x' + iy' deux nombres complexes. On considère la transformation R définie par : à tout point M d'affixe z , on associe le point M ' d'affixe z ' tel que :

$$\begin{cases} 2x' = x - y\sqrt{3} + \sqrt{3} \\ 2y' = x\sqrt{3} + y + 1 \end{cases}$$

1. (a) Donner l'écriture complexe de R.

1pt

(b) En déduire la nature exacte et les éléments géométriques de R.

0,75pt

2. Soit *h* l'application du plan dans lui-même d'écriture complexe z' = -2z + 3i.

Montrer que h est une homothétie de centre Ω d'affixe i.

0,75pt

3. On pose : $S = h \circ R$.

Déterminer la nature et les éléments géométriques de S.

0,75pt

B) On considere la fonction g définie sur $]1; +\infty[$ par $: g(x) = 1 - \frac{x-1}{x}$.

1. Calculer les limites de g en 1 et en $+\infty$.

0,5pt

1pt

2. (a) Etudier les variations de g et dresser son tableau de variations.

(b) En déduire le signe de g(x) sur $]1;+\infty[$.

0,5pt

C) Soit f la fonction définie sur $]1;+\infty[$ par $f(x)=\frac{1}{e^x}-\frac{1}{e^2}+\ln(x-1)$ et C_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) d'unité graphique 2cm.

1. Calculer les limites de f en 1 et en $+\infty$.

0,5pt

2. (a) Calculer f'(x) et montrer que $f'(x) = \frac{g(x)}{x-1}$.

0,75pt

(b) En déduire le sens de variations de f et dresser son tableau de variations.

0,75pt

3. (a) Calculer f(2) puis déterminer une équation de la tangente (T) en 2.

0,5pt

(b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$, puis donner une interprétation graphique du résultat.

0,5pt

(c) Tracer (T) et C_f .

D) On considère la fonction F définie sur $]1; +\infty[$ par $F(x) = -\frac{1}{e^x} + (x-1)\ln(x-1) - \left(1 + \frac{1}{e^2}\right)x$.

1. (a) Calculer F'(x).

0,5pt

(b) Montrer que F est une primitive de f sur $]1;+\infty[$.

2. On désigne par ${\mathscr M}$ l'aire en cm^2 du domaine délimité par la courbe $C_{_f}$, l'axe des abscisses et les droites d'équations x = 2 et x = 3.

Déterminer la valeur exacte de \mathscr{A} en cm^2 .

0,75pt

Examen: BACCALAUREAT

Session: 2020 Séries:D & TI

Durée : 4h Coefficient : 4 Prof : T. N . AWONO MESSI

ÉPREUVE DE MATHEMATIQUES N° 5

EXERCICE 1: 4 points

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points M_n d'affixes $z_n = \left(\frac{1}{2}i\right)^n \left(1+i\sqrt{3}\right)$ pour tout $n \in \mathbb{N}$.

1. Exprimer
$$z_{n+1}$$
 en fonction de z_n , puis z_n en fonction de z_0 et de n .

2. Ecrire sous forme trigonométrique les nombres complexes
$$z_0$$
 et z_n .

3. Déterminer la distance
$$OM_n$$
 en fonction de n . **0,5pt**

4. On pose
$$L_n = M_0 M_1 + M_1 M_2 + M_2 M_3 + ... + M_n M_{n+1}$$
.

(b) Montrer que
$$\forall n \in \mathbb{N}, M_n M_{n+1} = \frac{\sqrt{5}}{2^n}$$
.

(c) Exprimer
$$L_n$$
 en fonction de n et calculer sa limite. 0,75pt

EXERCICE 2: 5 points

Dans le plan complexe muni d'un repère orthonormé direct O, \vec{u}, \vec{v} , on considère les points A, B et C d'affixes respectives $z_A = -1 + i, z_B = \frac{1}{2}i$ et $z_C = -\frac{1}{4} + \frac{5}{4}i$. Pour $z \neq z_A$, on pose $Z = \frac{2z - i}{z + 1 - i}$ et z = x + iy où x, y sont des nombres réels.

- 1. Déterminer la partie réelle et la partie imaginaire de Z en fonction de x et y.
- **2.** Déterminer et construire l'ensemble (Σ) des points M d'affixes z tels que Z soit réel. **0,5pt**
- 3. Déterminer et construire l'ensemble (Γ) des points M d'affixes z tels que Z 'soit imaginaire pur. 0,75pt
- **4.** Déterminer et construire l'ensemble (Δ) des points M d'affixes z tels que |z'|=2. **0,5pt**
- **5.** Le point B appartient-il à (Σ) et à (Γ) ? Justifier la réponse. **0,5pt**
- **6.** Soit M' le point d'affixe Z'.
 - (a) Montrer que $OM = \frac{\sqrt{2}DM'}{EM'}$ où D est le point d'affixe $\frac{1-i}{2}$ et E un point dont on déterminera l'affixe.
 - **(b)** En déduire et construire l'ensemble (\mathscr{H}) des points M d'affixe Z 'tels que $|z|=\sqrt{2}$.
 - (c) Ecrire $\frac{z_A z_C}{z_B z_C}$ sous forme algébrique, puis sous forme trigonométrique. 0,75pt

0,5pt

PROBLEME: 11 points

Le problème comporte trois parties A, B et C.

PARTIE A: 1,75 points

On considère les intégrales : $I = \int_0^{\pi} e^x \sin x dx$ et $J = \int_0^{\pi} e^x \cos x dx$.

- **1.** Démontrer que I=-J et que $I=J+e^\pi+1$. (on pourra utiliser une intégration par parties)
- 1,25pt

2. En déduire les valeurs exactes de I et J.

0,5pt

PARTIE B:

5,5 points

On considère les fonctions g et h définies sur $]0;+\infty[$ par $g\left(x\right)=-2\ln x-xe+1$ et $h\left(x\right)=\frac{\ln x+xe}{x^2}$ où e désigne le nombre réel qui vérifie $\ln e=1$. On note $\left(\Gamma\right)$ la courbe représentative de h dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$, unité graphique : 2cm.

1. Etudier les variations de g.

1pt

- **2.** (a) Montrer que dans [0,5;1] l'équation g(x)=0 admet une unique solution notée α . **0,5pt**
 - **(b)** Déterminer un encadrement de α à 0,1 près.

0,5pt

(c) En déduire le signe de g(x) selon les valeurs de x.

0,5pt

3. Déterminer les limites de h aux bornes de son ensemble de définition.

0,5pt

- **4.** Soit h la fonction dérivée de h.
 - (a) Vérifier que pour tout $x \in]0; +\infty[$, $h'(x) = \frac{g(x)}{x^3}$, puis que $h(\alpha) = \frac{1+\alpha e}{2\alpha^2}$.
 - (b) Dresser le tableau de variation de h.

0,5pt

(c) Construire la courbe (Γ) .

1pt

PARTIE C:

3,75 points

Répondre par **VRAI** ou **FAUX** aux différentes affirmations suivantes en y apportant à chaque fois une justification.

1. Toute suite positive et croissante est divergente, car elle tend vers $+\infty$.

0,75pt

2. f est la fonction définie sur $]-0,5;+\infty[$ par $f(x)=2(x-1)\ln(2x+1)$.

L'équation
$$f(x) = x - 1$$
 admet une unique solution : $x = \frac{-1 + \sqrt{e}}{2}$.

1pt

- **3.** L'équation différentielle : y''+2y'-3y=0 admet pour solution les fonctions f définies par $f(x)=e^x(A\cos 3x-B\sin 3x)$ où $A,B\in\mathbb{R}$.
 - 1pt
- **4.** Pour tout entier naturel n , on note A_n le point d'affixe z_n défini par $z_0=1$ et

$$z_{n+1} = \left(\frac{3}{4} + \frac{\sqrt{3}}{4}i\right)z_n$$
. On définit la suite (r_n) par $r_n = |z_n|$.

$$(r_n)$$
 est une suite arithmétique de raison $\frac{\sqrt{3}}{2}$.

1pt