

1C2 RENFO Samedi 25 septembre 2021 Cel | 01 02 03 01 38

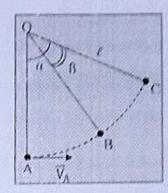
Lycée Classique d'Abidjan

PHYSIQUE - CHIMIE

Prof : M. Antoine KOUASSI

PHYSIQUE 1

Un pendule est constitué d'un fil inextensible, de masse négligeable, de longueur ℓ , fixé au point O et portant à son extrémité libre un solide S de masse m. On communique au pendule la vitesse VA.


Voir figure ci-contre.

1. Fais le bilan des forces extérieures qui s'appliquent sur le solide S et représente - les au point B.

2. Exprime et calcule WAB (P) et WBC (P).

3. Précise dans ces cas, le travail exercé par la tension du fil. Justifie ta réponse.

On donne : $m = 500 \, g$, $g = 10 \, N \, kg^{-1}$, $\ell = 20 \, cm$, $\alpha = 60^{\circ}$ et $\beta = 20^{\circ}$

PHYSIQUE 2

Les parties 1, 2 et 3 sont indépendantes.

Une piste ABCD est composée de trois parties : (o

- la partie AB de longueur 1 = 70 cm est inclinée d'un angle $\alpha = 60^{\circ}$ par rapport à l'horizontal.
- la partie BC est un arc de cercle de rayon r = 60 cm et de centre O.

Les parties AB et BC sont raccordées tangentiellement au point B (voir figure).

- la partie CD est un plan horizontal sur lequel est posé un ressort à spires non jointives et de constante de raideur K.

Données: g = 10 N/kg

- Une caisse de masse m=4.8~kg, maintenue par un câble de direction parallèle à la piste rugueuse AB. descend d'un mouvement rectiligne uniforme à la vitesse V = 0,25 m.s⁻¹. La tension du câble vaut T = 10 N.
 - 1.1. Détermine l'intensité des forces de frottement équivalentes à une force unique opposée au vecteur vitesse sur le trajet AB.

1.2. Détermine le travail et la puissance du poids de la caisse entre A et B.

- 2. Arrivée en B, le câble se casse et la caisse continue son mouvement suivant BC. On néglige les forces de frottement.
 - 2.1. Représente au point M les forces extérieures qui s'appliquent sur la caisse.

2.2. Détermine le travail du poids de la caisse sur le trajet BM . L'angle 0 = 30°.

3. Entre C et D, la caisse se déplace à vitesse constante. Elle vient heurter le ressort initialement à vide et le comprime de $x_1 = 1$ cm. Pour maintenir le ressort dans cet état, on exerce sur lui une force de 3 N.

3.1. Représente la tension du ressort et calcule sa constante de raideur K.

3.2. Calcule le travail de la tension du ressort.

3.3. A partir du raccourcissement précédent, on raccourcit à nouveau le ressort de $x_2 = 2$ cm en appuyant sur la caisse. Détermine le travail de la force exercée par la caisse sur le ressort.

CHIMIE Les parties 1 et 2 sont indépendantes. Données : II : 1 C:12 O:16 (en g.mol-1)

On veut déterminer la formule brute d'un composé organique A par deux différentes méthodes.

1. La combustion complète d'une masse m = 0,346 g du composé A fournit 0,616 g de dioxyde de carbone et 0,252 g d'eau.

1.1. Montre que ce composé n'est pas un hydrocarbure.

- 1.2. Détermine la composition centésimale massique du composé A.
- 1.3. Détermine la masse molaire du composé A sachant que sa molécule renferme deux atomes d'oxygène.

1.4. Détermine la formule brute du composé A.

- 2. On réalise la combustion complète d'un volume V = 10 cm³ du composé organique A de formule brute $C_xH_yO_2$ dans $V_2 = 35$ cm³ de dioxygène. Après refroidissement, on recueille $V_3 = 30$ cm³ de dioxyde de carbone et de l'eau.
 - 2.1. Ecris l'équation bilan de cette réaction de combustion.
 - 2.2. Détermine la formule brute du composé A.